Characteristics of Convection-triggering Drylines in the Drainage Area of Huanghe and Huaihe Rivers
-
摘要: 利用高空和地面观测、欧洲中期预报中心再分析资料(ERA5)以及卫星云图,统计2010—2019年4—9月我国黄淮地区触发对流天气的干线特征。结果表明:干线主要出现在山东德州附近和豫北周边地区,多呈准西北—东南向和准东北—西南向;长度集中在100~200 km,宽度在50~100 km;多出现在14:00(北京时,下同)或17:00;多发生在高空冷涡形势下,低层多有切变线(或辐合线)配合,地面多位于入海高压后部。地面气象要素统计显示:干线干侧温度较湿侧偏高1.9 ℃,湿侧露点温度较干侧偏高6.8 ℃,干线两侧温度梯度为-2.7 ℃·(100 km)-1,露点温度梯度为10.1 ℃·(100 km)-1,比湿梯度为5.9 g·kg-1·(100 km)-1。探空参数统计结果表明:干线湿侧大气可降水量略高于干侧,925 hPa,850 hPa和700 hPa湿侧比湿均大于干侧;对流有效位能湿侧平均值远大于干侧;干线两侧700 hPa,850 hPa与500 hPa温度差非常接近,即黄淮地区干线两侧对流有效位能的显著差异主要由干线两侧低层水汽条件差异造成,干线两侧条件不稳定度大致相当。Abstract: Based on the surface and sounding datasets, ERA5 reanalysis data from European Centre for Medium-Range Weather Forecasts (ECMWF) and the satellite images, the characteristics of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers of China from April to September during 2010-2019 are analyzed. The result shows that the drylines mainly appear at Dezhou of Shandong, and surroundings in the north of Henan. Most of them are distributed in the quasi northwest-southeast and northeast-southwest direction, with the length of 100-200 km and the width of 50-100 km, and they generally occur at 1400 BT or 1700 BT during the daytime. The drylines mostly occur under the 500 hPa cold vortex located in Northeast China and North China, with convergence lines (or shear lines) on 700 hPa and 850 hPa weather chart, and within the low pressure behind the coastal high on the surface chart. The statistics of the surface elements shows that the temperature on the dry side is 1.9 ℃ higher than that on the wet side, while the dew point temperature on the wet side is 6.8 ℃ higher than that on dry side. The gradient of temperature, dew point temperature and specific humidity on both sides of drylines are -2.7 ℃·(100 km)-1, 10.1 ℃·(100 km)-1 and 5.9 g·kg-1·(100 km)-1, respectively. According to the statistics of sounding environment parameters, precipitable water in the wet side is higher than that on the dry side. The specific humidity on the wet side is higher than that on the dry side at 925 hPa, 850 hPa and 700 hPa. The mean convective available potential energy on the wet side is much larger than that on the dry side. The temperature differences are very small on both sides of the drylines at 850 hPa and 500 hPa, 700 hPa and 500 hPa. The significant difference on both sides of the dry side in convective available potential energy is mainly caused by the difference in water condition of the lower layers in the drainage area of Huanghe and Huaihe Rivers of China. The hydrostatic instability (conditional instability) on both sides of the drylines is similar. Also, the vertical wind shear of 0-6 km is a little bit stronger on wet side than that on the dry side.
-
图 4 2010—2019年黄淮地区触发对流天气的干线两侧对流有效位能、700 hPa与500 hPa温度差、850 hPa与500 hPa温度差箱线图
Fig. 4 Convective available potential energy, temperature differences of 700 hPa to 500 hPa and 850 hPa to 500 hPa on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019
表 1 2010—2019年黄淮地区触发对流天气的干线信息
Table 1 Convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019
序号 发生时间 发生地点 伴随天气 环流背景 1 2010-06-03T14:00,17:00 德州—淄博 雷阵雨 华北冷涡后部 2 2010-06-17T14:00 濮阳南乐 雷阵雨 华北冷涡底部 3 2010-07-07T14:00 原阳 雷阵雨 副热带高压外围偏西气流 4 2011-06-08T14:00,17:00 商丘永城 雷阵雨 槽后西北气流 5 2011-06-11T14:00,17:00 濮阳—商丘 雷阵雨、大风冰雹 华北冷涡底部 6 2012-05-16T14:00 临沂—徐州 雷阵雨、大风 东北冷涡底部 7 2012-05-25T14:00 保定东—泊头 雷阵雨、大风 东北冷涡后部 8 2012-06-06T14:00,17:00 河北吴桥 雷阵雨 槽前 9 2013-05-23T14:00 民权—扶沟 雷阵雨 槽前 10 2014-06-10T14:00 保定—淄博 阵雨、大风 东北冷涡底部 11 2015-08-22T14:00 安阳附近 阵雨、大风 东北冷涡底部 12 2015-08-28T14:00 德州—泰山 阵雨、大风、冰雹 东北冷涡底部 13 2017-04-20T14:00 河北山东交界 阵雨 东北冷涡后部 14 2017-06-12T14:00 吴桥—济南 阵雨 脊前西北气流 15 2018-06-13T14:00 新乡 阵雨、大风、冰雹 华北冷涡底部 16 2019-05-10T14:00 邢台—安阳 阵雨、大风 偏西气流 表 2 2010—2019年黄淮地区触发对流天气的干线两侧探空参数统计
Table 2 Soundings on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019
条件 要素 位置 平均值 25%百分位 75%百分位 最大值 水汽条件 可降水量/cm 湿侧 2.5 2.0 3.2 4.0 干侧 2.3 1.6 2.8 3.8 700 hPa比湿/(g·kg-1) 湿侧 3.2 1.0 5.0 7.0 干侧 2.4 0.8 4.0 6.0 850 hPa比湿/(g·kg-1) 湿侧 5.6 3.8 8.0 11.0 干侧 5.9 3.8 8.0 12.0 925 hPa比湿/(g·kg-1) 湿侧 9.4 7.3 11.0 19.0 干侧 7.4 4.8 11.0 21.0 热力不稳定 对流有效位能/(J·kg-1) 湿侧 2214 1725 3184 4348 干侧 614 236 800 1910 700 hPa与500 hPa温度差/℃ 湿侧 18.3 17.0 19.3 22.0 干侧 18.2 17.0 20.0 20.0 850 hPa与500 hPa温度差/℃ 湿侧 29.9 29.0 31.0 35.0 干侧 29.6 27.8 32.0 33.0 抬升指数/℃ 湿侧 -6.9 -7.9 -6.3 -1.5 干侧 -2.2 -3.1 -0.6 0.5 风切变 风矢量差/(m·s-1) 湿侧 12.5 7.5 17.5 24.5 干侧 11.2 6.3 15.7 24.4 表 3 2010—2019年黄淮地区触发对流天气的干线两侧ERA5再分析资料统计
Table 3 Statistics of specific humidity and convective available potential energy on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers using ERA5 reanalysis from 2010 to 2019
条件 要素 相对位置 平均值 25%百分位 75%百分位 最大值 水汽条件 700 hPa比湿/(g·kg-1) 湿侧 4.5 3.6 5.6 6.5 干侧 4.2 3.4 5.0 6.5 850 hPa比湿/(g·kg-1) 湿侧 9.4 8.1 11.8 13.0 干侧 8.1 6.8 9.6 12.5 925 hPa比湿/(g·kg-1) 湿侧 10.2 9.3 12.6 14.0 干侧 8.7 7.8 10.3 12.0 热力不稳定条件 对流有效位能/(J·kg-1) 湿侧 1000 288 1550 2500 干侧 331 100 325 1400 700 hPa与500 hPa温度差/℃ 湿侧 17.8 16.6 18.9 21.6 干侧 17.8 16.8 18.8 21.5 850 hPa与500 hPa温度差/℃ 湿侧 29.2 27.9 30.4 34.5 干侧 29.2 27.9 30.5 34.2 -
[1] 马淑萍, 王秀明, 俞小鼎.极端雷暴大风的环境参量特征.应用气象学报, 2019, 30(3):292-301. doi: 10.11898/1001-7313.20190304Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304 [2] 俞小鼎, 王秀明, 李万莉, 等. 雷暴与强对流临近预报. 北京: 气象出版社, 2020.Yu X D, Wang X M, Li W L, et al. Thunderstorm and Strong Convection Nowcasting. Beijing: China Meteorological Press, 2020. [3] Fritsch J M, Carbone R E. Improving quantitative precipitation forecasts in warm season: An USWRP research and development strategy. Bull Amer Meteor Soc, 2004, 85(7): 955-965. doi: 10.1175/BAMS-85-7-955 [4] 刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206 [5] 张小玲, 谌芸, 张涛. 对流天气预报中的环境场条件分析. 气象学报, 2012, 70(4): 642-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204005.htmZhang X L, Chen Y, Zhang T. Meso-scale convective weather analysis and severe convective weather forecasting. Acta Meteor Sinica, 2012, 70(4): 642-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204005.htm [6] 王秀明, 俞小鼎, 周小刚. 中国东北龙卷研究: 环境特征分析. 气象学报, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htmWang X M, Yu X D, Zhou X G. Study of Northeast China torando: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm [7] 俞小鼎, 周小刚, 王秀明. 中国冷季高架对流个例初步分析. 气象学报, 2016, 74(6): 902-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606007.htmYu X D, Zhou X G, Wang X M. A preliminary case study of elevated convection in China. Acta Meteor Sinica, 2016, 74(6): 902-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606007.htm [8] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605 [9] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308 [10] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展. 气象学报, 2012, 70(3): 311-337. doi: 10.3969/j.issn.1004-4965.2012.03.003Yu X D, Zhou X G, Wang X M. The advances in the now casting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. doi: 10.3969/j.issn.1004-4965.2012.03.003 [11] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210 [12] 王福侠, 俞小鼎, 裴宇杰, 等. 河北省雷暴大风的雷达回波特征及预报关键点. 应用气象学报, 2016, 27(3): 342-351. doi: 10.11898/1001-7313.20160309Wang F X, Yu X D, Pei Y J, et al. Rader echo characteristics of thunderstorm gales and forecast key points in Hebei Province. J Appl Meteor Sci, 2016, 27(3): 342-351. doi: 10.11898/1001-7313.20160309 [13] 丁一汇. 强对流天气的分析和预报. 气象, 1978, 4(5): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197805011.htmDing Y H. Analysis and forecast of severe convective weather. Meteor Mon, 1978, 4(5): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197805011.htm [14] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比. 应用气象学报, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107 [15] Khodayar S, Kalthoff N, Wickert J, et al. High-resolution representation of the mechanisms responsible for the initiation of isolated thunderstorms over flat and complex terrains: Analysis of CSIP and COPS cases. Meteor Atmos Phys, 2013, 119(3/4): 109-124. doi: 10.1007/s00703-012-0232-6 [16] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [17] Emerson T J. Case Studies of Convective Initiations Using Dual-Doppler Analysis During the Convective and Orographically-induced Precipitation Study(COPS)//Proceedings of the 10th Annual Student Conference. Amer Meteor Soc, 2011. [18] 罗辉, 肖递祥, 匡秋明, 等. 四川盆地暖区暴雨的雷达回波特征及分类识别. 应用气象学报, 2020, 31(4): 460-470. doi: 10.11898/1001-7313.20200408Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi: 10.11898/1001-7313.20200408 [19] Fujita T T. Structure and movement of a dry front. Bull Amer Meteor Soc, 1958, 39(11): 574-582. doi: 10.1175/1520-0477-39.11.574 [20] Rhea J O. A study of thunderstorm formation along drylines. J Appl Meteor Sci, 1966, 5(1): 58-63. doi: 10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2 [21] Schaefer J T. The Dryline Mesoscale Meteorology and Forecasting. Amer Meteor Soc, 1986: 549-572. http://ci.nii.ac.jp/naid/10018882300 [22] 王秀明, 俞小鼎, 周小刚, 等. "6.3"区域致灾雷暴大风形成及维持原因分析. 高原气象, 2012, 31(2): 504-514. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htmWang X M, Yu X D, Zhou X G, et al. Study on the formation and evolution of "6.3" damage wind. Plateau Meteor, 2012, 31(2): 504-514. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm [23] 郑媛媛, 张雪晨, 朱红芳, 等. 东北冷涡对江淮飑线生成的影响研究. 高原气象, 2014, 33(1): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401026.htmZheng Y Y, Zhang X C, Zhu H F, et al. Study of squall line genesis with northeast cold vortex. Plateau Meteor, 2014, 33(1): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401026.htm [24] 王晓玲, 王海燕, 王珊珊, 等. 边界层准静止干线触发的中尺度暴雨机理分析. 髙原气象, 2015, 34(5): 1310-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201505012.htmWang X L, Wang H Y, Wang S S, et al. Analysis on mechanism of mesoscale rainstorm triggered by quasistationary dryline in boundary layer. Plateau Meteor, 2015, 34(5): 1310-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201505012.htm [25] 周雪英, 彭军, 刘杰. 库尔勒市强降水天气的环流配置及触发机制分析. 沙漠与绿洲气象, 2015, 9(5): 47-55. doi: 10.3969/j.issn.1002-0799.2015.05.008Zhou X Y, Peng J, Liu J. Analysis of circulation configuration and triggering mechanism of the heavy rainfall weather in Korla city. Desert and Oasis Meteor, 2015, 9(5): 47-55. doi: 10.3969/j.issn.1002-0799.2015.05.008 [26] Qin R, Chen M X. Impact of a front-dryline merger on convection initiation near a mountain ridge in Beijing. Mon Wea Rev, 2017, 145(7): 2611-2633. doi: 10.1175/MWR-D-16-0369.1 [27] Bai L Q, Meng Z Y, Huang Y P, et al. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study. J Geophy Res Atmos, 2019, 124(5): 2379-2396. doi: 10.1029/2018JD029832 [28] 方祖亮, 俞小鼎, 王秀明. 东北暖季干线统计分析. 气象学报, 2020, 78(2): 260-276. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202002009.htmFang Z L, Yu X D, Wang X M. Statistical analysis of drylines in Northeast China. Acta Meteor Sinica, 2020, 78(2): 260-276. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202002009.htm [29] 张一平, 牛淑贞, 郑世林. "07.06"周口龙卷现场调查和可预警性综合分析. 气象, 2019, 45(8): 1135-1148.Zhang Y P, Niu S Z, Zheng S L, el al. Investigation and warning practicability analysis of the 6 July 2017 tornado in Zhoukou City. Meteor Mon, 2019, 45(8): 1135-1148. [30] 孙淑清, 孟婵. 中-β尺度干线的形成与局地强对流暴雨. 气象学报, 1992, 50(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199202004.htmSun S Q, Meng C. The formation of a meso-β day line and local convective rainstorm. Acta Meteor Sinica, 1992, 50(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199202004.htm [31] Hoch J, Markowski P. A climatology of springtime dryline position in the US Great Plains region. J Climate, 2005, 18(12): 2132-2137. doi: 10.1175/JCLI3392.1 [32] 郑永光, 张春喜, 陈炯. 用NCEP资料分析华北暖季对流性天气的气候背景. 北京大学学报(自然科学版), 2007, 43(5): 600-608. doi: 10.3321/j.issn:0479-8023.2007.05.003Zheng Y G, Zhang C X, Chen J. Climatic back ground of warm-season convective weather in North China based on the NCEP Analysis. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(5): 600-608. doi: 10.3321/j.issn:0479-8023.2007.05.003 [33] 陶祖钰, 范俊红, 李开元, 等. 谈谈气象要素(压、温、湿、风)的物理意义和预报应用价值. 气象科技进展, 2016, 6(5): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201605018.htmTao Z Y, Fan J H, Li K Y, et al. On the physical meaning of 4 basic meteorological elements and applicability to weather forecasting. Advances in Meteorological Science and Technology, 2016, 6(5): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201605018.htm [34] Liu W. Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon Wea Rev, 1986, 114: 1591-1602. doi: 10.1175/1520-0493(1986)114<1591:SRBMMP>2.0.CO;2