Freezing Injury Index of Kiwifruit Branches for Main Varieties Under Simulated Low Temperature
-
摘要: 越冬冻害是猕猴桃的主要气象灾害,为探讨低温对猕猴桃的伤害机理,建立猕猴桃越冬冻害指标体系,2020年12月—2021年2月利用MSX-2F霜箱系统模拟越冬期低温过程,采用组织褐变率、细胞伤害率等参数对结果母枝冻害特征进行定量描述,通过冻害指数与低温的Logistic关系模型,研究6个主栽品种结果母枝冻害特征。结果表明:结果母枝主芽半致死温度以海沃德最低,为-16.5 ℃,瑞玉、徐香、金福居中,分别为-14.8 ℃,-14.9 ℃和-14.2 ℃,翠香、红阳较高,分别为-13.4 ℃,-13.8 ℃。-16 ℃~-10 ℃低温主要影响结果母枝主芽活性,-16 ℃为主芽受冻向副芽受冻的转折点,低于-18 ℃对主、副芽活性均有伤害,-20 ℃以下低温可造成结果母枝大量死亡。品种间抗冻性能,以海沃德最强,瑞玉、金福、徐香居中,翠香、红阳最弱。以结果母枝芽冻害指数为主要参数,构建6个主产品种猕猴桃结果母枝5级低温冻害指标,对应类型和温度阈值如下:1级为轻度减产型,-11.0 ℃~-10.5 ℃;2级为中度减产型,-14.5 ℃~-10.5 ℃;3级为重度减产型,-16.5 ℃~-12.0 ℃;4级为绝收型,-20.0 ℃~-13.5 ℃;5级为致死型,-20.0 ℃~-15.0 ℃。Abstract: Low temperature freezing injury is the main meteorological disaster affecting the yield and quality of kiwifruit in China. To explore the damage mechanism of low temperature stress on kiwifruit and establish the indices of kiwifruit overwintering freezing injury, the impacts on fruit parent branches of kiwifruit are investigated by simulating natural freezing injury process with MSX-2F artificial simulated frost box system. Growth recovery method, tissue browning method, cell freezing point temperature method and cell membrane damage rate method are used to describe the characteristics of freezing injury quantitatively. By establishing the logistic analysis model of the relationship between freezing injury index and low temperature, the characteristics of freezing injury of 6 varieties are studied systematically. The results show that the response of different varieties to low temperature are significantly different. The supercooling point of Ruiyu and Hayward are lower, which are -3.4 ℃ and -3.2 ℃, respectively. The supercooling point of Xuxiang, Jinfu and Cuixiang are basically similar, which are -2.0 ℃, -1.7 ℃ and -1.7 ℃, respectively. The supercooling point of Hongyang is the highest, which is -1.4 ℃. The half-lethal temperature of buds of Hayward (-16.5 ℃) is the lowest. The half-lethal temperature of Ruiyu (-14.8 ℃), Xuxiang (-14.9 ℃) and Jinfu (-14.2 ℃) is intermediate. And the half-lethal temperature of Cuixiang (-13.4 ℃) and Hongyang (-13.8 ℃) are the highest. The differences in the degree and site of injury caused by different intensities of low temperature are significant. The freezing injury caused by -16 ℃ to -10 ℃ mainly affects the activity of the main bud of the resulting parent shoot. When the temperature is below -18 ℃, the low temperature damages the activity of main and secondary buds. And when the temperature is below -20 ℃, a large number of parent shoots are killed by low temperature injury. Among varieties, the frost resistance of Hayward is the strongest, Ruiyu, Jinfu and Xuxiang are the middle, and Cuixiang and Hongyang are the weakest. Taking the freezing injury index of the resulting parent branch bud as the main parameter, the 5-grade low temperature freezing injury index of the resulting parent branch is constructed by different varieties. Its freezing temperature ranges of level 1-5 are -11.0 ℃ to -10.5 ℃, -14.5 ℃ to -10.5 ℃, -16.5 ℃ to -12.0 ℃, -20.0 ℃ to -13.5 ℃, -20.0 ℃ to -15.0 ℃, respectively.
-
表 1 猕猴桃芽座、枝条冻害程度形态分级标准
Table 1 Morphological grading standard of freeze injury degree of kiwifruit bud base and branch
类别 冻害等级 冻害程度形态表现 芽座 0 主芽正常萌发;或未萌发但芽座海绵体正常、主芽轴正常,芽座活性未受低温影响,为正常芽 1 主芽芽轴褐变或干枯,不能萌发出结果枝,丧失结果能力;芽座海绵体正常,副芽存活,可萌发出营养枝,为冻伤芽 2 主芽芽轴褐变或干枯,不能萌发出结果枝,丧失结果能力;芽座海绵体褐变,副芽也丧失萌发力,不能萌发出营养枝,影响次年结果,为褐变芽 枝条 0 韧皮部鲜绿正常 1 韧皮部大部绿色,局部褐变 2 韧皮部大部褐变,局部存有绿色 3 韧皮部失绿褐变 表 2 不同猕猴桃品种结果母枝过冷却点和结冰点温度
Table 2 Temperatures of supercooling point and freezing point for different kiwifruit varieties
温度 海沃德 徐香 金福 瑞玉 翠香 红阳 过冷却点/℃ -3.2 -2.0 -1.7 -3.4 -1.7 -1.4 结冰点/℃ -1.4 -0.8 -0.7 -1.8 -0.6 -0.2 跃升值/℃ 1.8 1.2 1.0 1.6 1.1 1.2 表 3 猕猴桃芽座冻害指数与低温强度Logistic拟合方程
Table 3 Logistic fitting equations between freezing injury index of kiwifruit bud base and low temperature intensity
品种 拟合方程 半致死温度/℃ 拟合度 翠香 F=100/(1+2461.96e0.75x)* -13.4 0.69 海沃德 F=100/(1+240.06e0.43x)** -16.5 0.97 红阳 F=100/(1+9541.10e0.85x)* -13.8 0.71 金福 F=100/(1+16974.71e0.88x)** -14.2 0.84 瑞玉 F=100/(1+454.54e0.53x)* -14.8 0.83 徐香 F=100/(1+1642.33e0.64x)** -14.9 0.85 注:**表示达到0.01显著性水平,*表示达到0.05显著性水平。 表 4 6种猕猴桃结果母枝低温冻害分级指标
Table 4 The grading indexes of low temperature freezing injury for 6 varieties of kiwifruit branch
品种 结果母枝低温冻害等级温度(T/℃) 1级 2级 3级 4级 5级 翠香 T≥-10.5 -12.0 ≤T<-10.5 -13.5≤T<-12.0 -15.0≤T<-13.5 T<-15.0 海沃德 T≥-11.5 -14.5≤T<-11.5 -16.5≤T<-14.5 -20.0≤T<-16.5 T<-20.0 红阳 T≥-11.0 -13.0≤T<-11.0 -14.0≤T<-13.0 -15.5≤T<-14.0 T<-15.5 金福 T≥-11.5 -13.0≤T<-11.5 -14.0≤T<-13.0 -16.0≤T<-14.0 T<-16.0 瑞玉 T≥-10.5 -13.0≤T<-10.5 -15.0≤T<-13.0 -17.5≤T<-15.0 T<-17.5 徐香 T≥-11.5 -13.5≤T<-11.5 -15.0≤T<-13.5 -17.0≤T<-15.0 T<-17.0 -
[1] 朱鸿云.猕猴桃.北京:中国林业出版社, 2009.Zhu H Y. Actinidia. Beijing: China Forestry Press, 2009. [2] 岁立云, 刘义飞, 黄宏文. 红肉猕猴桃种质资源果实性状及AFLP遗传多样性分析. 园艺学报, 2013, 40(5): 859-868. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201305008.htmSui L Y, Liu Y F, Huang H W. Genetic diversity of red-fleshed kiwifruit germplasm based on fruit traits and AFLP markers. Acta Horticulturae Sinica, 2013, 40(5): 859-868. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201305008.htm [3] Li J Q, Li X W, Soejarto D D. Actinidiaceae. Flora of China, 2007, 12: 334-360. [4] 梁畴芬. 论猕猴桃属植物的分布. 广西植物, 1983, 3(4): 3-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW198304000.htmLiang C F. On the distribution of Actinidias. Guangxi Plants, 1983, 3(4): 3-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW198304000.htm [5] 崔致学. 中国猕猴桃. 济南: 山东科学技术出版社, 1993.Cui Z X. Chinese Actinidia. Jinan: Shandong Scienceand Technology Press, 1993. [6] 黄宏文. 中国猕猴桃种质资源. 北京: 中国林业出版社, 2013.Huang H W. Chinese Kiwifruit Germplasm Resources. Beijing: China Forestry Publishing House, 2013. [7] 中国猕猴桃产业发展报告(2020). (2020-09-25)[2021-03-03]. https://www.sohu.com/a/420839164_230053.China Kiwifruit Industry Development Report(2020). (2020-09-25)[2021-03-03]. https://www.sohu.com/a/420839164_230053. [8] 钟彩虹, 黄宏文. 中国猕猴桃科研与产业四十年. 合肥: 中国科学技术大学出版社, 2018.Zhong C H, Huang H W. Forty Years of Scientific Research and Industry of Kiwifruit in China. Hefei: China University of Science and Technology Press, 2018. [9] 钟彩虹, 等. 猕猴桃栽培理论与生产技术. 北京: 科学技术出版社, 2020.Zhong C H, et al. Kiwifruit Cultivation Theory and Production Technology. Beijing: Science and Technology Press, 2020. [10] 黄敏, 陈杰忠. 果树抗寒性研究进展. 亚热带植物科学, 2011, 40(1): 80-84. doi: 10.3969/j.issn.1009-7791.2011.01.021Huang M, Chen J Z. Research progress on cold-resistance of fruit trees. Subtropical Plant Science, 2011, 40(1): 80-84. doi: 10.3969/j.issn.1009-7791.2011.01.021 [11] Testolin R, Messina R. Winter cold tolerance of kiwifruit. A survey after winter frost injury in Northern Italy. New Zealand Journal of Experimental Agriculture, 1987, 15(4): 501-504. doi: 10.1080/03015521.1987.10425604 [12] Latocha P. Frost Resistance and Spring Frost Sensibility of a Few Cultivars of Actinidia Grown in Central Poland//Annals of Warsaw University of Life Sciences-SGGW Horticulture and Landscape Architecture, 2008, 29: 111-120. [13] Ebrahimi Y, Jorshari H, Lashtneshaii K H. Frost Damage on Kiwifruit in Iran//Ⅶ International Symposium on Kiwifruit, International Society Horticultural Science, 2011: 315-320. [14] 安成立, 刘占德, 刘旭峰, 等. 猕猴桃不同树龄冻害调研报告. 北方园艺, 2011(18): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201118017.htmAn C L, Liu Z D, Liu X F, et al. Kiwifruit research report freezing of different ages. Northern Horticulture, 2011(18): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201118017.htm [15] 黄长社, 王雯燕, 王丽, 等. 周至猕猴桃冻害气候特征分析及防御对策. 甘肃科学学报, 2017, 29(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201706010.htmHuang C S, Wang W Y, Wang L, et al. Analysis and defending countermeasures of Zhouzhi kiwifruit freeze injury climatic characteristics. Journal of Gansu Sciences, 2017, 29(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201706010.htm [16] 虞志军, 周礼胜, 王岚, 等. 冰冻灾害对庐山植物园猕猴桃生长发育与产量的影响. 中国南方果树, 2012, 41(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-FRUI201202027.htmYu Z J, Zhou L S, Wang L, et al. The effects of cold injury on the growth and yield of Actinidia in Lushan Botanical Garden. South China Fruits, 2012, 41(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-FRUI201202027.htm [17] 陈家今, 李丽纯, 林晶, 等. 福建省枇杷气象灾害综合风险评估. 应用气象学报, 2014, 25(2): 232-241. doi: 10.3969/j.issn.1001-7313.2014.02.013Chen J J, Li L C, Lin J, et al. Integrated risk evaluation on meteorological disasters of loquat in Fujian Province. Journal of Applied Meteorological Science, 2014, 25(2): 232-241. doi: 10.3969/j.issn.1001-7313.2014.02.013 [18] 杨凯, 陈彬彬, 陈惠, 等. 福建省台湾青枣寒害综合气候指标与等级划分. 应用气象学报, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405Yang K, Chen B B, Chen H, et al. Comprehensive climatic index and grade classification of cold damage for Taiwan green jujube in Fujian. Journal of Applied Meteorological Science, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405 [19] 屈振江, 周广胜, 魏钦平. 苹果花期冻害气象指标和风险评估. 应用气象学报, 2016, 27(4): 385-395. doi: 10.11898/1001-7313.20160401Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi: 10.11898/1001-7313.20160401 [20] 屈振江, 柏秦凤, 梁轶, 等. 气候变化对陕西猕猴桃主要气象灾害风险的影响预估. 果树学报, 2014, 31(5): 873-898. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201405025.htmQu Z J, Bai Q F, Liang Y, et al. Potential impacts of climate change on the main meteorological disaster risk of kiwifruit in Shaanxi province. Journal of Fruit Science, 2014, 31(5): 873-898. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201405025.htm [21] Hewett E W, Young K. Critical freeze damage temperatures of flower buds of kiwifruit(Actinidia chinensis Planch. ). New Zealand Journal of Agricultural Research, 1981, 24(1): 73-75. doi: 10.1080/00288233.1981.10420873 [22] Pyke N B, Stanley C J, Warrington I J. Kiwifruit: Frost tolerance of plants in controlled frost conditions. New Zealand Journal of Experimental Agriculture, 1986, 14(4): 443-447. doi: 10.1080/03015521.1986.10423063 [23] Burak M, Samanci H, Buyukyilmaz M. Winter frost resistance of Hayward and Matua kiwifruit cultivars. Zahradnictvi(Horticultural Science), 2004, 31(1): 27-30. http://www.researchgate.net/publication/242708450_Winter_frost_resistance_of_Hayward_and_Matua_kiwifruit_cultivars [24] 孙世航. 猕猴桃抗寒性评价体系的建立与应用. 北京: 中国农业科学院, 2018.Sun S H. Establishment and Application of Cold Resistance Evaluation System of Kiwifruit. Beijing: Chinese Academy of Agricultural Sciences, 2018. [25] 王钊, 罗慧, 李亚丽等. 近50年秦岭南北不均匀增温及对城市化响应. 应用气象学报, 2016, 27(1): 85-94. doi: 10.11898/1001-7313.20160109Wang Z, Luo H, Li Y L, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. Journal of Applied Meteorological Science, 2016, 27(1): 85-94. doi: 10.11898/1001-7313.20160109 [26] 陈峪, 任国玉, 王凌, 等. 近56年我国暖冬气候事件变化. 应用气象学报, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. Journal of Applied Meteorological Science, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004 [27] 王培娟, 唐俊贤, 金志凤, 等. 中国茶树春霜冻害研究进展. 应用气象学报, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201Wang P J, Tang J X, Jin Z F, et al. Review on spring frost disaster for tea plant in China. Journal of Applied Meteorological Science, 2021, 32(2): 129-145. doi: 10.11898/1001-7313.20210201 [28] 林苗苗, 孙世航, 齐秀娟, 等. 猕猴桃抗寒性研究进展. 果树学报, 2020, 37(7): 1073-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK202007013.htmLin M M, Sun S H, Qi X J, et al. Advances in research on cold resistance in kiwifruit. Journal of Fruit Science, 2020, 37(7): 1073-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK202007013.htm [29] 吴博泽, 郭俊佩, 刘漩, 等. 猕猴桃冻害及抗寒研究进展. 天津农业科学, 2020, 26(8): 67-71. doi: 10.3969/j.issn.1006-6500.2020.08.017Wu B Z, Guo J P, Liu X, et al. Research progress on freezing damage and cold resistance of kiwifruit. Tianjin Agricultural Sciences, 2020, 26(8): 67-71. doi: 10.3969/j.issn.1006-6500.2020.08.017 [30] 段晓凤, 朱永宁, 张磊, 等. 宁夏枸杞花期霜冻指标试验研究. 应用气象学报, 2020, 31(4): 417-426. doi: 10.11898/1001-7313.20200404Duan X F, Zhu Y N, Zhang L, et al. Experimental research on frost indexes for lycium barbarum flowering phase. Journal of Applied Meteorological Science, 2020, 31(4): 417-426. doi: 10.11898/1001-7313.20200404 [31] 杨爱萍, 杜筱玲, 王保生, 等. 江西省多气象要素的柑橘冻害指标. 应用气象学报, 2013, 24(2): 248-256. doi: 10.3969/j.issn.1001-7313.2013.02.013Yang A P, Du X L, Wang B S, et al. The multiple-meteorological-factor indexes for orange frozen injury in Jiangxi Province. Journal of Applied Meteorological Science, 2013, 24(2): 248-256. doi: 10.3969/j.issn.1001-7313.2013.02.013 [32] 郭建平. 农业气象灾害监测预测技术研究进展. 应用气象学报, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. Journal of Applied Meteorological Science, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510 [33] 李星敏, 柏秦凤, 朱琳. 气候变化对陕西苹果生长适宜性影响. 应用气象学报, 2011, 22(2): 241-248. doi: 10.3969/j.issn.1001-7313.2011.02.013Li X M, Bai Q F, Zhu L. The influence of climate change on suitability of Shaanxi apple growth. Journal of Applied Meteorological Science, 2011, 22(2): 241-248. doi: 10.3969/j.issn.1001-7313.2011.02.013 [34] 王玮, 李红旭, 赵明新, 等. 7个梨品种的低温半致死温度及耐寒性评价. 果树学报, 2015, 32(5): 860-865. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505022.htmWang W, Li H X, Zhao M X, et al. Study on the cold resistance and the semi-lethal temperatures for seven pear cultivars. Journal of Fruit Science, 2015, 32(5): 860-865. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505022.htm [35] 赵婷婷, 韩飞, 陈美艳, 等. 基于3种模型的猕猴桃重要栽培品种需冷量研究. 中国果树, 2018(6): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201806013.htmZhao T T, Han F, Chen M Y, et al. Study on chilling requirements of important kiwifruit cultivars determined by three models. China Fruits, 2018(6): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201806013.htm [36] 郁俊谊. 猕猴桃高效栽培. 北京: 机械工业出版社, 2016.Yu J Y. Efficient Cultivation of Kiwifruit. Beijing: Machinery Industry Press, 2016.