留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于航测的云底气溶胶活化率与过饱和度估算

高茜 刘全 毕凯 王飞 盛久江 何晖 刘香娥

高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664.DOI:  10.11898/1001-7313.20210602..
引用本文: 高茜, 刘全, 毕凯, 等. 基于航测的云底气溶胶活化率与过饱和度估算. 应用气象学报, 2021, 32(6): 653-664. DOI:  10.11898/1001-7313.20210602.
Gao Qian, Liu Quan, Bi Kai, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. DOI:   10.11898/1001-7313.20210602.
Citation: Gao Qian, Liu Quan, Bi Kai, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. DOI:   10.11898/1001-7313.20210602.

基于航测的云底气溶胶活化率与过饱和度估算

DOI: 10.11898/1001-7313.20210602
资助项目: 

国家重点研发计划 2016YFA0601704

北京市自然科学基金项目 8192021

国家自然科学基金项目 41975177

国家自然科学基金项目 41805114

国家自然科学基金项目 42005078

详细信息
    通信作者:

    刘全, 邮箱: liuquan620@126.com

Estimation of Aerosol Activation Ratio and Water Vapor Supersaturation at Cloud Base Using Aircraft Measurement

  • 摘要: 2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。
  • 图  1  2016年11月13日北京上空飞机探测轨迹

    Fig. 1  Flight tracks over Beijing on 13 Nov 2016

    图  2  2016年11月13日华北地区云图

    (红点代表北京)

    Fig. 2  Infrared cloud image of North China on 13 Nov 2016

    (the red dot represent Beijing)

    图  3  2016年11月13日位势高度场(单位:gpm)

    (红点代表北京)

    Fig. 3  The geopotential height(unit: gpm) on 13 Nov 2016

    (the red dot represents Beijing)

    图  4  飞机观测期间的气象要素垂直廓线

    (a)温度, (b)位温, (c)水汽混合比, (d)相对湿度

    Fig. 4  Vertical profiles of in-situ measured meteorological parameters during the flight

    (a)temperature, (b)potential temperature, (c)water vapor mixing ratio, (d)relative humidity

    图  5  2016年11月13日北京上空气溶胶数浓度和有效粒径(a)以及云滴数浓度(b)的垂直廓线

    Fig. 5  Vertical profiles of aerosol and cloud droplet over Beijing on 13 Nov 2016 (a)aerosol concentration and effective diameter, (b)cloud droplet concentration

    图  6  气溶胶化学组成和吸湿性参数的垂直分布

    Fig. 6  Vertical distribution of aerosol chemical composition and hygroscopic parameter

    图  7  2016年11月13日北京上空气溶胶数谱和云滴谱随高度的变化

    Fig. 7  Vertical characteristics of aerosol and cloud droplet spectrum over Beijing on 13 Nov 2016

    图  8  云中(1050 m高度)、云底(750 m高度) 气溶胶粒径分布及云滴谱分布

    Fig. 8  The aerosol spectrum and cloud droplet spectrum at different levels

    图  9  不同过饱和度下云凝结核活化的临界粒径

    Fig. 9  The critical radius of cloud condensation nuclei activation at different degree of supersaturation

    表  1  各纯组分的密度、吸湿性参数κ

    Table  1  Density and hygroscopicity parameter(κ) of pure component

    化学物种 密度/(kg·m-3) κ
    NH4NO3 1725 0.68
    (NH4)2SO4 1769 0.52
    NH4HSO4 1780 0.56
    SOA 1400 0.10
    POA 1000 0
    黑碳气溶胶 1800 0
    下载: 导出CSV
  • [1] 丁一汇, 李巧萍, 柳艳菊, 等. 空气污染与气候变化. 气象, 2009, 35(3): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200903002.htm

    Ding Y H, Li Q P, Liu Y J, et al. Atmospheric aerosols, air pollution and climate change. Meteor Mon, 2009, 35(3): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200903002.htm
    [2] 马肖琳, 高西宁, 刘煜, 等. 气溶胶对东亚冬季风影响的数值模拟. 应用气象学报, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307

    Ma X L, Gao X N, Liu Yu, et al. Simulations of aerosol influences on the East Asian winter monsoon. J Appl Meteor Sci, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307
    [3] 陶昕宇, 黄建平, 谢晓金, 等. 气溶胶辐射效应对边界层结构及夹卷特征影响的观测分析. 大气科学, 2020, 44(6): 1213-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006005.htm

    Tao X Y, Huang J P, Xie X J, et al. Observational analysis of the influence of aerosol radiation effect on planetary boundary layer structure and entrainment characteristics. Chinese J Atmos Sci, 2020, 44(6): 1213-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006005.htm
    [4] 徐敬, 陈丹, 赵秀娟, 等. RMAPS_Chem V1.0系统SO2排放清单优化效果评估. 应用气象学报, 2019, 30(2): 164-176. doi:  10.11898/1001-7313.20190204

    Xu J, Chen D, Zhao X J, et al. Evaluation on SO2 emission inventory optimizing applied to RMAPS_Chem V1.0 system. J Appl Meteor Sci, 2019, 30(2): 164-176. doi:  10.11898/1001-7313.20190204
    [5] 徐影, 丁一汇, 赵宗慈. 近30年人类活动对东亚地区气候变化影响的检测与评估. 应用气象学报, 2002, 13(5): 513-525. http://qikan.camscma.cn/article/id/20020569

    Xu Y, Ding Y H, Zhao Z C. Detection and evolution of effect of human activities on climatic change in East Asia in recent 30 years. J Appl Meteor Sci, 2002, 13(5): 513-525. http://qikan.camscma.cn/article/id/20020569
    [6] 张天航, 廖宏, 常文渊. 基于国际大气化学-气候模式比较计划模式数据评估中国沙尘气溶胶直接辐射强迫. 大气科学, 2016, 40(6): 1242-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606011.htm

    Zhang T H, Liao H, Chang W Y. Direct radiative forcing by dust in China based on Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP) datasets. Chinese J Atmos Sci, 2016, 40(6): 1242-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606011.htm
    [7] Stocker T F, Qin D, Plattner G K, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, 18: 95-123.
    [8] Tsigaridis K, Krol M, Dentener F J, et al. Change in global aerosol composition since preindustrial times. Atmos Chem Phys, 2006, 6: 5143-5162. doi:  10.5194/acp-6-5143-2006
    [9] 李德平, 程兴宏, 孙治安, 等. 北京不同区域气溶胶辐射效应. 应用气象学报, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509

    Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509
    [10] 田华, 马建中, 李维亮, 等. 中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟. 应用气象学报, 2005, 16(3): 322-333. http://qikan.camscma.cn/article/id/20050341

    Tian H, Ma J Z, Li W L, et al. Simulation of forcing of sulfate aerosol on direct radiation and its climate effect over middle and eastern China. J Appl Meteor Sci, 2005, 16(3): 322-333. http://qikan.camscma.cn/article/id/20050341
    [11] 贾小芳, 颜鹏, 孟昭阳, 等. 2016年11-12月北京及周边重污染过程PM2.5特征. 应用气象学报, 2019, 30(3): 302-315. doi:  10.11898/1001-7313.20190305

    Jia X F, Yan P, Meng Z Y, et al. Characteristics of PM2.5 in heavy pollution events in Beijing and surrounding areas from November to December in 2016. J Appl Meteor Sci, 2019, 30(3): 302-315. doi:  10.11898/1001-7313.20190305
    [12] Solomon S, Qin D, Manning M, et al. IPCC 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007, 18: 95-123.
    [13] Myhre G, Berglen T F, Johnsrud M, et al. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos Chem Phys, 2009, 9: 1365-1392. doi:  10.5194/acp-9-1365-2009
    [14] Dusek U, Frank G, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312: 1375-1378. doi:  10.1126/science.1125261
    [15] 郭学良, 方春刚, 卢广献, 等. 2008-2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [16] Twomey S. The nuclei of natural cloud formation part Ⅱ: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 1959, 43: 243-249. doi:  10.1007/BF01993560
    [17] Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev Geophys, 2000, 38: 513-543. doi:  10.1029/1999RG000078
    [18] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102: 6831-6864. doi:  10.1029/96JD03436
    [19] Penner J E, Zhang S Y, Chuang C C. Soot and smoke aerosol may not warm climate. J Geophys Res Atmos, 2003, 108: 1-9. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEhQxMC4xMDI5LzIwMDNKRDAwMzQwORoIcXpwZTZ6dWU%3D
    [20] Zhang X Y, Wang J Z, Wang Y Q, et al. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys, 2015, 15: 12935-12952. doi:  10.5194/acp-15-12935-2015
    [21] Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514: 218-222. doi:  10.1038/nature13774
    [22] 梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506

    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [23] 杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311

    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    [24] Liu Q, Liu D, Gao Q, et al. Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter. Atmos Chem Phys, 2020, 20: 3931-3944. doi:  10.5194/acp-20-3931-2020
    [25] Zhao D, Huang M, Tian P, et al. Vertical characteristics of black carbon physical properties over Beijing region in warm and cold seasons. Atmos Environ, 2019, 213: 296-310. doi:  10.1016/j.atmosenv.2019.06.007
    [26] Fan J, Leung L R, Li Z, et al. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J Geophys Res Atmos, 2012, 117, D00K36. http://www.onacademic.com/detail/journal_1000035848175710_229c.html
    [27] Liu Q, Quan J, Jia X, et al. Vertical profiles of aerosol composition over Beijing, China: Analysis of in situ aircraft measurements. J Atmos Sci, 2019, 76: 231-245. doi:  10.1175/JAS-D-18-0157.1
    [28] 赵春生, 彭大勇, 段英. 海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用. 应用气象学报, 2005, 16(4): 417-425. http://qikan.camscma.cn/article/id/e943451b-7985-445e-96fa-72d05eab6ee7

    Zhao C S, Peng D Y, Duan Y. The impacts of sea-salt and nss-sulfate aerosols on cloud microproperties. J Appl Meteor Sci, 2005, 16(4): 417-425. http://qikan.camscma.cn/article/id/e943451b-7985-445e-96fa-72d05eab6ee7
    [29] 段婧, 毛节泰. 气溶胶与云相互作用的研究进展. 地球科学进展, 2008, 23(3): 252-261. doi:  10.3321/j.issn:1001-8166.2008.03.005

    Duan J, Mao J T. Progress in research on interaction between aerosol and cloud. Advances in Earth Science, 2008, 23(3): 252-261. doi:  10.3321/j.issn:1001-8166.2008.03.005
    [30] Andreae M, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 2008, 89: 13-41. doi:  10.1016/j.earscirev.2008.03.001
    [31] Liu X, Gu J, Li Y, et al. Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility. Atmos Res, 2013, 132/133: 91-101. doi:  10.1016/j.atmosres.2013.04.007
    [32] Farmer D K, Cappa C D, Kreidenweis S. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115: 1-49. doi:  10.1021/cr500685g
    [33] Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161. doi:  10.1039/TF9363201152
    [34] Drewnick F, Hings S, Decarlo P, et al. A new time-of-flight aerosol mass spectrometer(TOF-AMS)-Instrument description and first field deployment. Aerosol Science & Technology, 2005, 39: 637-658. http://www.researchgate.net/profile/Ken_Demerjian/publication/44158351_A_New_Time-of-Flight_Aerosol_Mass_Spectrometer_TOF-AMS-Instrument_Description_and_First_Field_Deployment/links/571e461408aefa6488999d22.pdf
    [35] Canagaratna M R, Jayne J T, Jimenez J L, et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26: 185-222. doi:  10.1002/mas.20115
    [36] Ulbrich I M, Canagaratna M R, Zhang Q, et al. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys, 2009, 9: 2891-2918. doi:  10.5194/acp-9-2891-2009
    [37] Drinovec L, Monik G, Zotter P, et al. The "dual-spot" Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8: 1965-1979. doi:  10.5194/amt-8-1965-2015
    [38] Tian P, Liu D, Zhao D, et al. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing. Atmos Chem Phys, 2020, 20: 2603-2622. doi:  10.5194/acp-20-2603-2020
    [39] Liu P, Zhao C, Zhang Q, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B Chem Phys Meteor, 2009, 61: 756-767. doi:  10.1111/j.1600-0889.2009.00440.x
    [40] Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys, 2007, 6: 8435-8456.
    [41] Gysel M, Crosier J, Topping D O, et al. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos Chem Phys, 2007, 7: 6131-6144. doi:  10.5194/acp-7-6131-2007
    [42] Wu Z J, Zheng J, Shang D J, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos Chem Phys, 2016, 16: 1123-1138. doi:  10.5194/acp-16-1123-2016
    [43] Park K, Kittelson D B, Zachariah M R, et al. Measurement of inherent material density of nanoparticle agglomerates. J Nanopart Res, 2004, 6: 267-272. doi:  10.1023/B:NANO.0000034657.71309.e6
    [44] Kleinman L, Daum P H, Lee Y N, et al. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx. Atmos Chem Phys, 2012, 12: 207-223. doi:  10.5194/acp-12-207-2012
    [45] Henning S, Weingartner E, Schmidt S, et al. Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl). Tellus B Chem Phys Meteor, 2002, 54: 82-95. doi:  10.3402/tellusb.v54i1.16650
    [46] Mertes S, Lehmann K, Nowak A, et al. Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO. Atmos Environ, 2005, 39: 4247-4256. doi:  10.1016/j.atmosenv.2005.02.010
    [47] Gillani N V, Schwartz S E, Leaitch W R, et al. Field observations in continental stratiform clouds: Partitioning of cloud particles between droplets and unactivated interstitial aerosols. J Geophys Res, 1995, 100: 18687-18706. doi:  10.1029/95JD01170
    [48] Hudson J G, Noble S, Jha V. Stratus cloud supersaturations. Geophys Res Lett, 2010, 37, L2813.
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  1038
  • HTML全文浏览量:  206
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-10-13
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回