Aircraft Measurement of the Vertical Structure of a Weak Stratiform Cloud in Early Winter
-
摘要: 为分析层状云垂直微物理结构,了解雷达参数特征,揭示降水机制,利用机载Ka波段云雷达和DMT(Droplet Measurement Technologies)粒子测量系统,针对2019年11月17日山东冷锋层状云系开展从云顶至云底的垂直探测。结果表明:观测云层由高层云(3100~4500 m高度)和雨层云(800 ~2600 m高度)两部分组成。高层云过冷水含量较低,平均值为0.0026 g·m-3,最大值为0.008 g·m-3,云内冰晶通过水汽凝华增长,平均浓度为8.2 L-1,最大直径为900 μm,平衡谱状态下冰晶浓度与雷达反射率因子具有较好相关性,相关系数最大为0.84。雨层云过冷水含量丰富,最大含水量为0.354 g·m-3,过冷水区平均雷达反射率因子为7.48 dBZ,多普勒速度为-2.3 m·s-1,速度谱宽为0.7 m·s-1;雨层云中上部以冰晶为主,下部为暖区融化粒子,冰晶通过凇附过程增长,平均浓度为208 L-1,最大直径为450 μm;雷达反射率因子随高度降低至1500 m不断增大,在1200~1500 m高度保持不变,1200 m高度以下减小,未出现明显0℃亮带,速度谱宽随高度降低增大。Abstract: In order to obtain the vertical microphysical structure of the stratiform cloud and characteristics of the radar parameters and reveal the precipitation mechanism, the airborne Ka-band cloud radar and DMT particle measurement system are used to target the stable precipitation layer of a cold front in Shandong Province on 17 November 2019. The results show that the observed cloud layer consists of two parts: Altostratus (As, 3100-4500 m) and nimbostratus (Ns, 800-2600 m). The content of As supercooled water is low, with an average value of 0.0026 g·m-3 and the maximum value of 0.008 g·m-3. The average ice crystal content in the cloud is 8.2 L-1. In the vertical space, the ice crystal size and spectral are different. Ice crystals grow through deposition, with a maximum diameter of 900 μm. In the state of equilibrium spectrum, the ice concentration has a good correlation with radar reflectivity, and the maximum correlation coefficient is 0.84. The movement of particles in the cloud is different. The speed of small particles varies greatly and is easily affected by updrafts. The falling speed of large-scale ice crystals is stable. The central part of the Ns (1750-2150 m) is rich in supercooled water, with the maximum content of 0.354 g·m-3. The average radar reflectivity of the supercooled water region is 7.48 dBZ, the Doppler velocity is -2.3 m·s-1, and the velocity spectral width is 0.7 m·s-1. The height of the supercooled water layer in the cloud can be comprehensively judged by combining a variety of detection data and parameters. The upper part of the Ns is dominated by ice crystals and the lower part is filled by melted particles in the warm zone. The average concentration of ice crystals is 208 L-1, which increases through the riming process, and the maximum diameter is 450 μm. The radar reflectivity profile increases as the height decreases from 2200 m to 1500 m, remains unchanged from 1500 m to 1200 m, and decreases below 1200 m. There is no obvious bright band at 0℃ level, and the velocity spectral width profile increases as the height decreases. The supercooled water in the stratiform cloud in early winter is abundant, and the concentration of ice crystals meets the standard of seeding area, which has a certain potential for rainfall enhancement.
-
图 1 2019年11月17日14:00的500 hPa位势高度(黑色线,单位:dagpm)、500 hPa等温线(黄色线,单位:℃)、850 hPa风场(风羽)和850 hPa相对湿度(填色)
Fig. 1 500 hPa geopotential height(the black contour, unit:dagpm), 500 hPa temperature(the yellow contour, unit:℃), 850 hPa wind(the barb) and 850 hPa relative humidity (the shaded) at 1400 BT 17 Nov 2019
表 1 1989—2019年山东秋冬季云微物理参数特征
Table 1 Cloud microphysical parameters from 1989 to 2019
序号 日期 过冷水含量/(g·m-3) 冰晶浓度/L-1 样本量 1 1989-09-10 0.034 10.5 5493 2 1989-10-10 0.065 13.9 6854 3 1992-09-28 0.002 7.8 6754 4 2006-10-18 0.042 7.5 1961 5 2007-10-12 0.041 13.7 2318 6 2007-10-27 0.049 6.3 8850 7 2008-09-19 0.093 15.4 3932 8 2008-10-21 0.041 15.9 6883 9 2018-10-25 10.2 6702 10 2018-10-31 10.9 6136 11 2019-10-24 0.012 10.6 4911 12 2019-11-17 0.049 15.2 10316 -
[1] 李云川, 孙玉稳, 崔粉娥.河北中南部地区秋季层状云宏、微观物理特征分析.第十五届全国云降水与人工影响天气科学会议论文集(I).北京:气象出版社, 2008:321-324.Li Y C, Sun Y W, Cui F E. Analysis of the Macro and Microphysical Characteristics of Stratified Clouds in Autumn in the Central and Southern Part of Hebei Province//Proceedings of the 15th National Conference on Cloud Precipitation and Weather Modification(I). Beijing: China Meteorological Press, 2008: 321-324. [2] 顾震潮. 云雾降水物理基础. 北京: 科学出版社, 1980: 173-179.Gu Z C. Physical Basis of Cloud and Precipitation. Beijing: Science Press, 1980: 173-179. [3] 赵仕雄, 陈文辉, 杭洪宗. 青海东北部春季系统性降水高层云系微物理结构分析. 高原气象, 2002, 21(3): 281-287. doi: 10.3321/j.issn:1000-0534.2002.03.009Zhao S X, Chen W H, Hang H Z. Analysis on precipitation altostratus microphysical structure in spring over north-east Qinghai. Plateau Meteorology, 2002, 21(3): 281-287. doi: 10.3321/j.issn:1000-0534.2002.03.009 [4] 严采蘩, 陈万奎. 层状云云滴尺度谱分布及其谱参数计算. 应用气象学报, 1990, 1(4): 352-359. http://qikan.camscma.cn/article/id/19900452Yan C F, Chen W K. The stratus cloud droplet number/size distributions and spectral parameters calculation. J Appl Meteor Sci, 1990, 1(4): 352-359. http://qikan.camscma.cn/article/id/19900452 [5] 游来光, 吴兑. 层状云中的液水含量与降水条件. 气象, 1981, 7(3): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198103012.htmYou L G, Wu D. Liquid water content and precipitation conditions in stratiform clouds. Meteor Mon, 1981, 7(3): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198103012.htm [6] 游来光, 熊光莹, 高明忍, 等. 春季吉林地区层状冷云中冰晶的形成与雪晶增长特点. 气象学报, 1965, 23(4): 423-433. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196504004.htmYou L G, Xiong G Y, Gao M R, et al. The formation of ice crystals and the growth characteristics of snow crystals in the layered cold cloud in Jilin area in spring. Acta Meteor Sinica, 1965, 23(4): 423-433. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196504004.htm [7] 孙可富, 游来光. 1963年4-6月吉林地区降水性层状冷云中的冰晶与雪晶. 气象学报, 1965, 23(3): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196503000.htmSun K F, You L G. Ice crystals and snow crystals in the precipitation layered cold cloud in Jilin area from April to June 1963. Acta Meteor Sinica, 1965, 23(3): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196503000.htm [8] 汪宏七, 赵高祥. 云微物理特性对云光学和云辐射性质的影响. 应用气象学报, 1996, 7(1): 36-44. http://qikan.camscma.cn/article/id/19960105Wang H Q, Zhao G X. The influences of cloud microphysical parameters on cloud optical and radiative properties. J Appl Meteor Sci, 1996, 7(1): 36-44. http://qikan.camscma.cn/article/id/19960105 [9] 张国栋. 冰云短波辐射特性参数化. 应用气象学报, 1997, 8(3): 283-291. http://qikan.camscma.cn/article/id/19970341Zhang G D. Parameterization of shortwave radiation properties of ice cloud. J Appl Meteor Sci, 1997, 8(3): 283-291. http://qikan.camscma.cn/article/id/19970341 [10] 杨军, 陈宝君, 银燕, 等. 云降水物理学. 北京: 气象出版社, 2011.Yang J, Chen B J, Yin Y, et al. Physical of Clouds and Precipitation. Beijing: China Meteorological Press, 2011. [11] 邓育鹏, 董晓波, 吕锋, 等. 河北省降水性层状云宏微观物理特征. 气象与环境学报, 2013, 29(3): 29-34. doi: 10.3969/j.issn.1673-503X.2013.03.005Deng Y P, Dong X B, Lv F, et al. Macro and microphysical characters of precipitable stratiform cloud over Hebei Province. Journal of Meteorology and Environment, 2013, 29(3): 29-34. doi: 10.3969/j.issn.1673-503X.2013.03.005 [12] 封秋娟, 李培仁, 侯团结, 等. 山西春季一次层状冷云的微物理结构特征. 大气科学学报, 2014, 37(4): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201404008.htmFeng Q J, Li P R, Hou T J, et al. Microphysical characteristics of spring precipitation cold stratiform clouds in Shanxi Province. Trans Atmos Sci, 2014, 37(4): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201404008.htm [13] 王维佳, 董晓波, 石立新, 等. 一次多层云系云物理垂直结构探测研究. 高原气象, 2011, 30(5): 1368-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105024.htmWang W J, Dong X B, Shi L X, et al. Study on vertical microphysical structure of cloud for a multi-layer cloud system. Plateau Meteorology, 2011, 30(5): 1368-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105024.htm [14] 陈万奎, 马培民. 四川春季一次层状云宏微观特征和降水机制. 气象科学研究院院刊, 1986, 1(1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601006.htmChen W K, Ma P M. The microphysical characteristics and the mechanism of the precipitation of the stratiform cloud in Sichuan Province in spring. J Academy Meteor Sci, 1986, 1(1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601006.htm [15] 李军霞, 李培仁, 陶玥, 等. 山西春季层状云系数值模拟及与飞机探测对比. 应用气象学报, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103 [16] 李照荣, 李荣庆, 李宝梓. 兰州地区秋季层状云垂直微物理特征分析. 高原气象, 2003(6): 583-589. doi: 10.3321/j.issn:1000-0534.2003.06.008Li Z R, Li R Q, Li B Z. Analyses on vertical microphysical characteristics of autumn stratiform cloud in Lanzhou region. Plateau Meteorology, 2003(6): 583-589. doi: 10.3321/j.issn:1000-0534.2003.06.008 [17] 李照荣, 李宝梓, 庞朝云, 等. 甘肃省秋季层状云冰雪晶粒子特征个例分析. 甘肃气象, 2002(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200203009.htmLi Z R, Li B Z, Pang C Y, et al. The characteristic of ice-snow crystals of straitiform-type clouds in autumn in Gansu Province. Gansu Meteorology, 2002(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200203009.htm [18] 王扬锋, 雷恒池, 樊鹏, 等. 一次延安层状云微物理结构特征及降水机制研究. 高原气象, 2007, 26(2): 388-395. doi: 10.3321/j.issn:1000-0534.2007.02.022Wang Y F, Lei H C, Fan P, et al. Analyses on microphysical characteristic and precipitation mechanism on stratiform cloud in Yan'an. Plateau Meteorology, 2007, 26(2): 388-395. doi: 10.3321/j.issn:1000-0534.2007.02.022 [19] 张佃国, 郭学良, 付丹红, 等. 2003年8~9月北京及周边地区云系微物理飞机探测研究. 大气科学, 2007, 31(4): 596-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704004.htmZhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003. Chinese J Atmos Sci, 2007, 31(4): 596-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704004.htm [20] 李永振, 李茂伦, 李薇, 等. 北方降水性层状云人工增雨潜力区的逐步判别研究. 应用气象学报, 2003, 14(4): 430-436. http://qikan.camscma.cn/article/id/20030453Li Y Z, Li M L, Li W, et al. Stepwise discrimination analysis of potential areas for rain enhancement in stratiform clouds in north China. J Appl Meteor Sci, 2003, 14(4): 430-436. http://qikan.camscma.cn/article/id/20030453 [21] 孙豪, 刘黎平, 郑佳锋. 不同波段垂直指向雷达功率谱密度对比. 应用气象学报, 2017, 28(4): 447-457. doi: 10.11898/1001-7313.20170406Sun H, Liu L P, Zheng J F. Comparisons of Doppler spectral density data by different bands pointing vertically radars. J Appl Meteor Sci, 2017, 28(4): 447-457. doi: 10.11898/1001-7313.20170406 [22] Kropfli R A, Kelly R D. Meteorological research applications of mm-wave radar. Meteor Atmos Phys, 1996, 59(1/2): 105-121. [23] 唐英杰, 马舒庆, 杨玲, 等. 云底高度的地基毫米波云雷达观测及其对比. 应用气象学报, 2015, 26(6): 680-687. doi: 10.11898/1001-7313.20150604Tang Y J, Ma S Q, Yang L, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. doi: 10.11898/1001-7313.20150604 [24] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi: 10.11898/1001-7313.20210307Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi: 10.11898/1001-7313.20210307 [25] 陶法, 官莉, 张雪芬, 等. Ka波段云雷达晴空回波垂直结构及变化特征. 应用气象学报, 2020, 31(6): 719-728. doi: 10.11898/1001-7313.20200607Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi: 10.11898/1001-7313.20200607 [26] Shupe M D. A ground-based multisensor cloud phase classifier. Geophy Res Lett, 2007, 34(22): 48-55. http://www.esrl.noaa.gov/psd/pubs/396 [27] Frisch A S, Fairall C W, Snider J B. Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J Atmos Sci, 1995, 52(16): 2788-2799. http://www.researchgate.net/profile/Chris_Fairall/publication/238026277_Measurement_of_Stratus_Cloud_and_Drizzle_Parameters_in_ASTEX_with_a_K/links/02e7e52dea356765b5000000 [28] 黄毅梅, 周毓荃, 杨敏. 利用3 mm云雷达资料分析混合相云垂直结构及过冷水分布. 高原气象, 2017, 36(1): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701021.htmHuang Y M, Zhou Y Q, Yang M. Using 3 mm cloud radar data to analyze frontal mixed cloud vertical structure and supercooled water. Plateau Meteorology, 2017, 36(1): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701021.htm [29] 张连云, 冯桂利. 降水性层状云的微物理特征及人工增雨催化条件的研究. 气象, 1997, 23(5): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX705.001.htmZhang L Y, Feng G L. Study of the microphysical structure and seedable conditions of stratiform clouds in spring and fall. Meteor Mon, 1997, 23(5): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX705.001.htm [30] 王成恕. 山东省春秋季降水系统的云物理概念特征. 山东气象, 1994(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX404.002.htmWang C S. Conceptual characteristics of cloud physics of precipitation system in Shandong Province in spring and autumn. Shandong Meteorology, 1994(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX404.002.htm [31] 樊志超, 周盛, 汪玲, 等. 湖南秋季积层混合云系飞机人工增雨作业方法. 应用气象学报, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207 [32] 王烁, 张佃国, 郭学良, 等. 利用机载探测设备研究云中零度层附近云雷达反射率与液态含水量的关系. 海洋气象学报, 2020, 40(2): 103-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202002011.htmWang S, Zhang D G, Guo X L, et al. Research on correlation between reflectivity and liquid water content around the 0℃ layer in the clouds by airborne detection equipments. Journal of Marine Meteorology, 2020, 40(2): 103-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202002011.htm [33] 张佃国, 王烁, 郭学良, 等. 基于机载Ka波段云雷达和粒子测量系统同步观测的积层混合云对流泡特征. 大气科学, 2020, 44(5): 1023-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202005009.htmZhang D G, Wang S, Guo X L, et al. The properties of convective generating cells embedded in the stratiform cloud on basis of air-borne Ka-band precipitation cloud radar and droplet measurement technologies. Chinese J Atmos Sci, 2020, 44(5): 1023-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202005009.htm [34] 孙鸿娉, 李培仁, 闫世明, 等. 华北层状冷云降水微物理特征及人工增雨可播性研究. 气象, 2011, 37(10): 1252-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201110010.htmSun H P, Li P R, Yan S M, et al. A study of microphysical characteristics and seedability of cold stratiform clouds in North China. Meteor Mon, 2011, 37(10): 1252-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201110010.htm [35] 石爱丽. 层状云降水微物理特征及降水机制研究概述. 气象科技, 2005, 33(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200502001.htmShi A L. Progress in researches on microphysical characteristics and precipitation mechanisms of stratiform cloud precipita-tion. Meteorological Science and Technology, 2005, 33(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200502001.htm [36] McFarquhar G M, Cober S G. Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J Climate, 2004, 17(19): 3799-3813. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=89DA8D4B5CF1B2266FE5D4047E83CBDD?doi=10.1.1.492.4683&rep=rep1&type=pdf [37] McFarquhar G M. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J Geophys Res Atmos, 2007, 112(D24201): 1-19. http://nldr.library.ucar.edu/repository/assets/osgc/OSGC-000-000-001-815.pdf [38] 张佃国, 郭学良, 龚佃利, 等. 山东省1989-2018年23架次飞机云微物理结构观测试验结果. 气象学报, 2011, 69(1): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101017.htmZhang D G, Guo X L, Gong D L, et al. The observation results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteor Sinica, 2011, 69(1): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101017.htm [39] Plummer D M, McFarquhar G M, Rauber R M, et al. Structure and statistical analysis of the microphysical properties of the micro-physical properties of generating cells in the comma head region of continental winter cyclones. J Atmos Sci, 2015, 71(11): 4181-4203. [40] Hodson M C. Raindrop size distribution. J Climate Appl Meteor, 1986, 25(7): 1793-1806. [41] Roland L. A linear radar reflectivity-rainrate relationship for steady tropical Rain. J Atmos Sci, 1988, 45(23): 3564-3572. doi: 10.1175/1520-0469(1988)045<3564%3AALRRRF>2.0.CO%3B2 [42] 吴举秀, 魏鸣, 黄磊, 等. 对非球形冰晶94 GHz云雷达后向散射和衰减的研究. 气象科学, 2016, 36(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201601008.htmWu J X, Wei M, Huang L, et al. Back scattering and attenuation of non-spherical ice crystals with 94 GHz millimeter-wavelength. Journal of the Meteorological Sciences, 2016, 36(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201601008.htm [43] 王金虎, 葛俊祥, 魏鸣, 等. 非球形冰晶粒子毫米波IWC-Z关系的研究. 热带气象学报, 2016, 32(2): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602011.htmWang J H, Ge J X, Wei M, et al. A study of the relationship between IWC and Z for non-spherical ice particles at millimeter wave-length. Journal of Tropical Meteorology. 2016, 32(2): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602011.htm [44] Sassen K, Matrosov S, Campbell J. CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation driven up-side-down lidar analog. Geophys Res Lett, 2007, 34(16): L16818. doi: 10.1029/2007GL030291/pdf [45] 吴举秀, 魏鸣, 周杰. 94 GHz云雷达回波及测云能力分析. 气象学报, 2014, 72(2): 402-416. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402015.htmWu J X, Wei M, Zhou J. Echo and capability analysis of 94 GHz cloud radars. Acta Meteor Sinica, 2014, 72(2): 402-416. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402015.htm [46] Shupe M D, Intrieri J M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J Climate, 2004, 17(3): 616-628. http://www.onacademic.com/detail/journal_1000039205071410_40b7.html [47] Shupe M D, Matrosov S Y, Uttal T. Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J Atmos Sci, 2006, 63(2): 697-711. http://esrl.noaa.gov/psd/people/matthew.shupe/publications/Shupeetal.JAS2006.pdf