Aircraft Measurement of Microphysical Characteristics of a Topographic Cloud Precipitation in Qilian Mountains
-
摘要: 祁连山是我国西北地区重要的生态屏障,地形云是祁连山主要降水云系,加强对祁连山云微物理过程的认识,对科学有效开展人工增雨作业、改善生态环境具有重要意义。利用2020年8月29日祁连山一次地形云降水过程的飞机观测数据,研究祁连山地区夏季云降水过程的微物理特征。此次降水过程云系呈明显的分层结构,云底高度为4000 m,整层含水量较丰富,云水大值区出现在4500~5300 m高度,与云滴高浓度区对应,云水含量主要由粒子直径为15~20 μm的云滴粒子贡献。小云粒子和大云粒子平均浓度分别为7.54 cm-3和0.86 cm-3,有效直径平均值分别为11.02 μm和198.11 μm,呈现出浓度小、直径大的特征。云系翻越祁连山过程中南北坡云微物理特征有明显变化,北坡(背风坡)粒子浓度、直径和液态水含量明显大于南坡(迎风坡)。祁连山地区不同高度小云粒子谱呈单峰型分布,Gamma分布可较好拟合直径小于50 μm的云滴谱,直径大于50 μm的云粒子谱更符合幂指数分布。凝华和聚并是冰相层冰雪晶的增长机制,混合层冰晶增长以贝吉龙过程为主,并伴有凇附和聚并生长。Abstract: Qilian Mountains are an important ecological barrier in Northwest China. The precipitation in Qilian Mountains is mainly caused by topographical cloud system. Aircraft detection in Qilian Mountains is of great significance for deepening the understanding of cloud microphysical processes, and for scientifically and effectively carrying out artificial precipitation operations to improve the ecological environment. Using the airborne observations of a topographic cloud precipitation process in Qilian Mountains on 29 August 2020, the microphysical characteristics of the summer cloud precipitation process in Qilian Mountains are studied. The cloud system presents an obvious layered structure. The height of the cloud base is 4000 m, and the water content of the whole layer is relatively rich. The liquid water content (L) is between 0.65 and 1.1 g·m-3, and the cloud water large value area appears at 4500-5300 m altitude, which has a high concentration of cloud droplets. The water content of cloud water is mainly contributed by cloud droplets between 15 and 20 μm. The average concentrations of small cloud particles and large cloud particles are 7.54 cm-3 and 0.86 cm-3. The average effective diameters of small cloud particles and large cloud particles are 11.02 μm and 198.11 μm. The cloud particles in Qilian Mountains have the characteristics of small concentration and large diameter. There are obvious differences in cloud microphysical characteristics between the north and south slopes of Qilian Mountains. Affected by the topography, the concentration and diameter of cloud droplets on the northern slope are larger than those on the southern slope, and L on the northern slope are significantly larger than those on the southern slope too. The spectra of cloud droplets at different heights in Qilian Mountains are respectively unimodal distribution. The spectrum of cloud droplets with a diameter less than 50 μm can be fitted by Gamma distribution, while the spectrum of cloud droplets with a diameter greater than 50 μm shows a power exponent distribution. The ice crystals in the ice layer are mainly grown through the process of sublimation and coalescence. The growth mechanism of the ice crystals in the mixed layer is mainly the Bergeron process, and accompanied by attachment and aggregation growth.
-
图 3 2020年8月29日6200 m高度云微物理量水平分布特征(a)液态水含量和温度,(b)CAS浓度和有效直径,(c)CAS谱,(d)CIP浓度和有效直径,(e)CIP谱,(f)PIP浓度和有效直径,(g)PIP谱
Fig. 3 Horizontal distribution characteristics of cloud microphysics at 6200 m altitude on 29 Aug 2020 (a)liquid water content and temperature, (b)concentration and effective diameter of CAS, (c)spectrum of CAS, (d)concentration and effective diameter of CIP, (e)spectrum of CIP, (f)concentration and effective diameter of PIP, (g)spectrum of PIP
图 4 2020年8月29日6800 m高度云微物理量水平分布特征(a)液态水含量和温度,(b)CAS浓度和有效直径,(c)CAS谱,(d)CIP浓度和有效直径,(e)CIP谱,(f)PIP浓度和有效直径,(g)PIP谱
Fig. 4 Horizontal distribution characteristics of cloud microphysics at 6800 m altitude on 29 Aug 2020 (a)liquid water content and temperature,(b)concentration and effective diameter of CAS, (c)spectrum of CAS,(d)concentration and effective diameter of CIP,(e)spectrum of CIP, (f)concentration and effective diameter of PIP,(g)spectrum of PIP
图 5 2020年8月29日10:16—10:42祁连山南侧门源站探测的云微物理量垂直分布(a)温度及液态水含量,(b)CAS粒子浓度及直径,(c)CIP粒子浓度及直径,(d)PIP粒子浓度及直径
Fig. 5 Vertical distribution of cloud microphysical quantities detected from 1016 BT to 1042 BT at Menyuan on the south side of Qilian Mountains on 29 Aug 2020 (a)temperature and liquid water content, (b)particle concentration and diameter of CAS, (c)particle concentration and diameter of CIP, (d)particle concentration and diameter of PIP
图 7 2020年8月29日飞机穿越祁连山探测过程中云粒子微物理特征
(圆圈轨迹表示飞机探测轨迹,圆圈颜色代表粒子数浓度值,圆圈大小代表粒子有效直径(D,单位:102 μm),黑色线条为祁连山地形)
Fig. 7 Cloud microphysical characteristics during the detection flight over Qilian Mountains on 29 Aug 2020
(the circle track represents the detection flight path, the color of circles represents the particle number concentration, the size of circles represents the effective diameter of the particle(D,unit:102 μm), and the black line shows the terrain of Qilian Mountains)
图 8 不同高度云粒子谱分布(散点) 及拟合曲线(a)CAS粒子Gamma分布拟合,(b)CAS粒子Γ分布拟合,(c)CIP粒子幂指数分布拟合,(d)CIP粒子M-P分布拟合
Fig. 8 Particle number concentration (the dot) and fitting curve at different heights (a)gamma distribution fitting of CAS particle, (b)Γ distribution fitting of CAS particle, (c)power exponent distribution fitting of CIP particle, (d)M-P distribution fitting of CIP particle
表 1 2020年8月29日飞行探测过程中云粒子特征参数统计
Table 1 Parameter statistics of cloud particle characteristics during detecting flight on 29 Aug 2020
要素 统计量 时间 11:20—11:30 11:52—12:12 NCAS/cm-3 平均值 5.05 13.35 最大值 25.66 62.67 DCAS/μm 平均值 10.74 16.37 最大值 27.5 47.47 NCIP/cm-3 平均值 0.68 2.17 最大值 6.83 10.43 DCIP/μm 平均值 58.63 146.04 最大值 625.00 1150.00 NPIP/cm-3 平均值 0.0004 0.012 最大值 0.001 0.13 DPIP/μm 平均值 111.60 738.80 最大值 1683.60 4589.40 LWC/(g·m-3) 平均值 0.71 0.77 最大值 0.83 0.99 表 2 不同高度小云粒子数浓度谱拟合结果
Table 2 The fitting results of the concentration spectrum of small cloud droplets at different heights
高度/m Gamma Γ 截距N0 形状因子μ 斜率Λ 决定系数R2 截距N0 斜率Λ 5600 1.09×10-5 8.410 0.455 0.932 1.317 0.110 6200 9.92×10-7 9.179 0.518 0.982 0.382 0.116 6600 9.78×10-7 10.430 0.670 0.946 1.205 0.129 表 3 不同高度大云粒子数浓度谱拟合结果
Table 3 The fitting results of the concentration spectrum of big cloud droplets at different heights
高度/m M-P 幂指数 截距N0 斜率Λ 截距N0 斜率Λ 决定系数R2 5600 26.583 0.006 1.63×103 1.059 0.891 6200 79.733 0.022 2.2×104 1.700 0.961 6600 8.306 0.0120 1.43×103 1.427 0.940 -
[1] Hobbs P V.The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding.Part I:Natural conditions. J Appl Meteor, 1975, 14(5):783-804. doi: 10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2 [2] Hobbs P V, Radke L F. The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part Ⅱ: Techniques for the physical evaluation of seeding. J Appl Meteor, 1975, 14(5): 805-818. doi: 10.1175/1520-0450(1975)014<0805:TNOWCA>2.0.CO;2 [3] Prasad N, Rodi A R, Heymsfiield A J. Observations and numerical simulations of precipitation development in seeded clouds over the Sierra Nevada. J Appl Meteor, 1989, 28(10): 283-289. http://adsabs.harvard.edu/abs/1989JApMe..28.1031P [4] Deshler T, Reynolds D W. The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J Appl Meteor, 1990, 29(6): 477-488. doi: 10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2 [5] Chu X, Geerts B, Xue L, et al. A case study of cloud radar observations and large-eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J Appl Meteor Climatol, 2017, 56(5): 1285-1304. doi: 10.1175/JAMC-D-16-0364.1 [6] 楼小凤, 傅瑜, 苏正军. 人工影响天气碘化银催化剂研究进展. 应用气象学报, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202 [7] 苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608 [8] Geerts B, Miao Q, Yang Y, et al. An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J Atmos Sci, 2010, 67(10): 3286-3301. doi: 10.1175/2010JAS3496.1 [9] 刘佩, 银燕, 陈倩, 等. 吸湿性播撒对暖性对流云减雨影响的数值模拟. 应用气象学报, 2019, 30(2): 211-222. doi: 10.11898/1001-7313.20190208Liu P, Yin Y, Chen Q, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. doi: 10.11898/1001-7313.20190208 [10] 亓鹏, 郭学良, 卢广献, 等. 华北太行山东麓一次稳定性积层混合云飞机观测研究: 对流云/对流泡和融化层结构特征. 大气科学, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htmQi P, Guo X L, Lu G X, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure. Chinese J Atmos Sci, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm [11] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405 [12] 方春刚, 郭学良. 华北一次浓雾过程爆发性增强的微物理特征. 应用气象学报, 2019, 30(6): 700-709. doi: 10.11898/1001-7313.20190606Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi: 10.11898/1001-7313.20190606 [13] 李宏宇, 周旭, 张荣, 等. 不同机载设备观测的气象要素与飞行参数对比分析. 气象, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htmLi H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm [14] 李德泉, 李抗抗, 李宏宇, 等. 飞机作业监测移动应用系统的设计与实现. 应用气象学报, 2019, 30(6): 745-758. doi: 10.11898/1001-7313.20190610Li D Q, Li K K, Li H Y, et al. Design and implementation of mobile application for real-time monitoring of weather-modification aircraft operations. J Appl Meteor Sci, 2019, 30(6): 745-758. doi: 10.11898/1001-7313.20190610 [15] 郝囝, 陈景华, 濮梅娟, 等. 华东地区夏季云微物理结构的飞机观测分析. 气象科学, 2019, 39(4): 524-531. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201904010.htmHao J, Chen J H, Pu M J, et al. Aircraft measurements of microphysical properties of clouds over eastern China in summer. Journal of the Meteorological Sciences, 2019, 39(4): 524-531. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201904010.htm [16] 毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109 [17] 郭学良, 方春刚, 卢广献, 等. 2008-2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601 [18] 王研峰, 黄武斌, 和翠英, 等. 陇中黄土高原一次秋季层状云微物理结构及适播性分析. 干旱气象, 2017, 35(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701009.htmWang Y F, Huang W B, He C Y, et al. Analysis on microphysical structure of stratiform clouds in autumn in Loess plateau of middle Gansu. Journal of Arid Meteorology, 2017, 35(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701009.htm [19] 范烨, 郭学良, 张佃国, 等. 北京及周边地区2004年8, 9月层积云结构及谱分析飞机探测研究. 大气科学, 2010, 34(6): 1187-1200. doi: 10.3878/j.issn.1006-9895.2010.06.12Fan Y, Guo X L, Zhang D G, et al. Airborne particle measuring system measurement on structure and size distribution of stratocumulus during August to September in 2004 over Beijing and its surrounding areas. Chinese J Atmos Sci, 2010, 34(6): 1187-1200. doi: 10.3878/j.issn.1006-9895.2010.06.12 [20] 杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层状云微物理特征的飞机观测研究. 大气科学, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htmYang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm [21] 王黎俊, 银燕, 姚展予, 等. 三江源地区秋季一次层积云飞机人工增雨催化试验的微物理响应. 气象学报, 2013, 71(5): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305012.htmWang L J, Yin Y, Yao Z Y, et al. Microphysical responses as seen in a stratocumulus aircraft seeding experiment in autumn over the Sanjiangyun National Nature Reserve. Acta Meteor Sinica, 2013, 71(5): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305012.htm [22] 王黎俊, 银燕, 李仑格, 等. 三江源地区秋季典型多层层状云系的飞机观测分析. 大气科学, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htmWang L J, Yin Y, Li L G, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm [23] 孙玉稳, 董晓波, 李宝东, 等. 太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究. 高原气象, 2019, 38(5): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905006.htmSun Y W, Dong X B, Li B D, et al. The physical properties and seeding potential analysis of a low trough cold front cloud system at Mountain Taihang based on aircraft observations. Plateau Meteorology, 2019, 38(5): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905006.htm [24] 封秋娟, 李培仁, 侯团结, 等. 山西春季一次层状冷云的微物理结构特征. 大气科学学报, 2014, 37(4): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201404008.htmFeng Q J, Li P R, Hou T J, et al. Microphysical characteristics of spring precipitation cold stratiform clouds in Shanxi Province. Transactions of Atmospheric Sciences, 2014, 37(4): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201404008.htm [25] 李照荣, 李荣庆, 李宝梓. 兰州地区秋季层状云垂直微物理特征分析. 高原气象, 2003, 22(6): 583-589. doi: 10.3321/j.issn:1000-0534.2003.06.008Li Z R, Li R Q, Li B Z. Analyses on vertical microphysical characteristics of autumn stratiform cloud in Lanzhou region. Plateau Meteorology, 2003, 22(6): 583-589. doi: 10.3321/j.issn:1000-0534.2003.06.008 [26] 庞朝云, 张丰伟, 张建辉, 等. 甘肃夏季不同天气系统层状云的微物理结构特征. 兰州大学学报(自然科学版), 2016, 52(2): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201602011.htmPang C Y, Zhang F W, Zhang J H, et al. The microphysical structure of stratiform cloud in different weather system types in Gansu in summer. Journal of Lanzhou University(Nat Sci Ed), 2016, 52(2): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201602011.htm [27] 郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验. 地球科学进展, 2011, 26(10): 1057-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201110007.htmZheng G G, Chen Y, Chen T Y, et al. The observational study of summer orographic clouds structures of Qilian Mountains. Advances in Earth Science, 2011, 26(10): 1057-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201110007.htm [28] 马学谦, 陈跃, 张国庆, 等. X波段双偏振雷达对不同坡度地形云探测个例分析. 干旱气象, 2015, 33(4): 675-683. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201504018.htmMa X Q, Chen Y, Zhang G Q, et al. Analysis of topographic cloud on different slope observed by X-band dual-polarized radar. Journal of Arid Meteorology, 2015, 33(4): 675-683. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201504018.htm [29] 刘卫国, 刘奇俊. 祁连山夏季地形云结构和云微物理过程的模拟研究(I): 模式云物理方案和地形云结构. 高原气象, 2007, 26(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200701000.htmLiu W G, Liu Q J. The numerical simulation of orographic cloud structure and cloud microphysical processes in Qilian Mountains in summer. Part (I): Cloud microphysical scheme and orographic cloud stucture. Plateau Meteorology, 2007, 26(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200701000.htm [30] 邵元亭, 刘奇俊, 荆志娟. 祁连山夏季地形云和降水宏微观结构的数值模拟. 干旱气象, 2013, 31(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201301004.htmShao Y T, Liu Q J, Jing Z J. Numerical simulation on macrophysics and microphysics structure of the orographic cloud and precipitation in summer of the Qilian Mountains. Journal of Arid Meteorology, 2013, 31(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201301004.htm [31] 张强, 孙昭萱, 陈丽华, 等. 祁连山空中云水资源开发利用研究综述. 干旱区地理, 2009, 32(3): 381-390. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200903012.htmZhang Q, Sun Z X, Chen L H, et al. Review on the development and utilization of cloud water resources in Qilian Mountains. Arid Land Geography, 2009, 32(3): 381-390. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200903012.htm [32] 史晋森, 张武, 陈添宇, 等. 2006年夏季祁连山北坡雨滴谱特征. 兰州大学学报(自然科学版), 2008, 178(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200804013.htmShi J S, Zhang W, Chen T Y, et al. Raindrop-size distribution characteristics of the northern face of Qilian Mountains in the summer of 2006. Journal of Lanzhou University(Nat Sci Ed), 2008, 178(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200804013.htm [33] 张逸轩, 庞朝云, 李照荣, 等. 祁连山区一次非降水层状云的微物理结构探测分析. 干旱气象, 2008, 26(4): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200804011.htmZhang Y X, Pang C Y, Li Z R, et al. Analysis on microphysical structure of a summer stratus over Qilian Mountain. Arid Meteorology, 2008, 26(4): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200804011.htm [34] 张杰, 张强, 田文寿, 等. 祁连山区云光学特征的遥感反演与云水资源的分布特征分析. 冰川冻土, 2012, 28(5): 722-727. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200605014.htmZhang J, Zhang Q, Tian W S, et al. Remote sensing retrieval and analysis of optical character of cloud in Qilian Mountains. Journal of Glaciology and Geocryology, 2006, 28(5): 722-727. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200605014.htm [35] 蔡兆鑫, 蔡淼, 李培仁, 等. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究. 大气科学, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htmCai Z X, Cai M, Li P R, et al. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htm [36] 王研峰, 王蓉, 王聚杰, 等. 西北干旱半干旱区一次层状云系微物理特征分析. 干旱区地理, 2019, 42(6): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201906007.htmWang Y F, Wang R, Wang J J, et al. Cloud microphysical characteristics on a stratiform nephsystem in the arid and semi-arid regions of northwest China. Arid Land Geography, 2019, 42(6): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201906007.htm [37] 洪延超. 层状云结构和降水机制研究及人工增雨问题讨论. 气候与环境研究, 2012, 17(6): 937-950. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206032.htmHong Y C. Research progress of stratiform cloud structure and precipitation mechanism and discussion on artificial precipitation problems. Climatic and Environmental Research, 2012, 17(6): 937-950. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206032.htm [38] 梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111Mei H X, Liang X Z, Zeng M Q, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111 [39] 朱士超, 郭学良. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究. 大气科学, 2015, 39(2): 370-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201502012.htmZhu S C, Guo X L. A case study comparing WRF-model-simulated cloud microphysics and precipitation with aircraft measurements in stratiform clouds with embedded convection in Northern China. Chinese J Atmos Sci, 2015, 39(2): 370-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201502012.htm [40] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309