留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DMT机载云粒子图像形状识别及其应用

张荣 李宏宇 周旭 李昊 胡向峰 夏强

张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. DOI:  10.11898/1001-7313.20210608..
引用本文: 张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. DOI:  10.11898/1001-7313.20210608.
Zhang Rong, Li Hongyu, Zhou Xu, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. DOI:  10.11898/1001-7313.20210608.
Citation: Zhang Rong, Li Hongyu, Zhou Xu, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. DOI:  10.11898/1001-7313.20210608.

DMT机载云粒子图像形状识别及其应用

DOI: 10.11898/1001-7313.20210608
资助项目: 

国家重点研发计划 2018YFC1505702

国家重点研发计划 2019YFC1510301

中国气象科学研究院基本科研业务费 2019Y003

中国气象科学研究院基本科研业务费 2020Z008

详细信息
    通信作者:

    张荣, 邮箱: zhangrong@cma.gov.cn

Shape Recognition of DMT Airborne Cloud Particle Images and Its Application

  • 摘要: 利用机载云粒子探测设备入云进行观测是目前获取云粒子微物理特征最直接有效的手段。国内已有多家单位引进美国DMT(Droplet Measurement Technologies)公司的云粒子图像探头CIP(cloud imaging probe)。由于其配套软件不能输出逐个粒子的详细信息,在很大程度上限制了对云粒子图像探测数据的深入挖掘和分析。基于解析粒子图像原始数据,对粒子图像数据进行质量控制,并根据粒子形状几何特征将粒子形状分为8类(微小、线状、聚合状、霰状、球状、板状、枝状和不规则状)。利用2018年12月—2019年3月河南省3次冬季航测获取的灰度CIP探测数据,分析云粒子形状及各形状粒子面积的统计特征,并对比基于不同形状粒子的质量-尺度关系与将所有粒子视作球形液滴计算所得的粒子水凝物含量,发现后者超过前者约1个量级。
  • 图  1  粒子通过光电二极管阵列时形成粒子图像的原理图

    Fig. 1  Schematic diagram for the image produced as particles passing across optical array

    图  2  CIP相邻粒子间隔时间和间隔距离(a)及相邻粒子间隔时间分布(b)

    Fig. 2  The interval time and distance between adjacent particles detected by CIP(a) and the histogram of the interval time between adjacent particles(b)

    图  3  利用相邻粒子时间间隔阈值法剔除破碎粒子示例

    (红色矩形所标记粒子为破碎粒子,灰色竖线用以分割不同粒子)

    Fig. 3  Typical shattering particles eliminated by the inter-arrival time method

    (particles marked in red rectangles are shattering particles, gray vertical lines are used to separate different particles)

    图  4  粒子本身存在离散点的原始图像(a)及剔除离散点后的图像(b)

    (红圈所示)

    Fig. 4  The original particle image with discrete points(a) and the image after removing the discrete points(b)

    图  5  在二极管阵列方向或飞行方向上只有1个像素的噪点(a)及条状粒子(b)

    Fig. 5  Examples of noisy points(a) and streaking particles(b) with only one pixel in the direction of diode array or flight

    图  6  粒子形状识别所用几何参量

    Fig. 6  Geometric parameters used for particle shape classification

    图  7  粒子形状识别示例

    Fig. 7  Examples of distinguishing particle shapes

    图  8  各形状粒子出现频率、平均面积及不同个例典型粒子图像

    Fig. 8  The occurrence frequency, average area of each shape of particles and typical particle images of three cases

    图  9  根据不同形状粒子的质量公式所得水凝物含量及将所有粒子视作球形液滴所得水凝物含量

    Fig. 9  The hydrometeor content obtained according to the mass formulas for particles of different shapes and when all particles treated as spherical liquid droplets

    表  1  粒子形状判别流程

    Table  1  The decision procedure of particle shape classification

    步骤 原判别条件[26] 本文判别条件 粒子形状
    a<25 a<23 微小
    r2≥0.4或(d<64且Dx≥4DyDy≥4Dx) r2≥0.4或(d<64且d≥4w) 线状
    d>160 d>100 聚合状
    S≥0.7 S≥0.7 霰状
    d≥64且F≤13 d≥51且F≤9 霰状
    d≥64且F>13 d≥51且F>9 聚合状
    F≤5.5 F≤5.5 球状
    F<10且d≥32 F<10且d≥32 霰状
    F<10且d<32 F<10且d<32 板状
    F<16或Dx≤7 F<16或Dx≤7 不规则状
    其余粒子 其余粒子 枝状
    下载: 导出CSV

    表  2  分析时段的个例情况

    Table  2  Information of cases during the analysis period

    个例 时段 探测高度/m 温度/℃
    20181210 17:14—17:37 2100 -7
    20190108 22:58—23:46 3600 -10~-8
    20190226 15:36—15:48 4200 -17
    下载: 导出CSV

    表  3  统计结果

    Table  3  Statistical results

    粒子形状 个例20181210 个例20190108 个例20190226
    频率/% 平均面积/(105 μm2) 频率/% 平均面积/(105 μm2) 频率/% 平均面积/(105 μm2)
    微小 21.17 0.0846 8.52 0.0819 6.62 0.0684
    线状 1.52 1.1014 14.33 0.9684 3.94 1.4017
    聚合状 0.01 6.2185 0.45 5.5009 2.73 6.3862
    霰状 0.46 3.3971 2.84 4.0957 15.12 3.8128
    球状 65.76 0.2833 22.72 0.5188 13.04 0.7995
    板状 9.84 0.6050 46.84 0.6802 43.28 1.3404
    不规则状 1.24 0.7487 3.81 1.2645 14.22 2.8251
    枝状 0.01 1.6271 0.5 1.9824 1.04 1.8786
    下载: 导出CSV
  • [1] Baumgardner D, Brenguier J L, Bucholtz A, et al. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation:A cook's tour of mature and emerging technology. Atmos Res, 2011, 102:10-29. doi:  10.1016/j.atmosres.2011.06.021
    [2] Knollenberg R G. The optical array: An alternative to scattering or extinction for airborne particle size determination. J Appl Meteor, 1970, 9(1): 86-103. doi:  10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2
    [3] Lawson R P, Jensen E, Mitchell D L, et al. Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J Geophys Res, 2010, 115, D10(D00J08). DOI:  10.1029/2009JD013017.
    [4] Sukovich E M, Kingsmill D E. Variability of graupel and snow observed in tropical oceanic convection by aircraft during TRMM KWAJEX. J Appl Meteor Climatol, 2009, 48: 185-198. doi:  10.1175/2008JAMC1940.1
    [5] 李军霞, 李培仁, 陶玥, 等. 山西春季层状云系数值模拟及与飞机探测对比. 应用气象学报, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103

    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
    [6] Leroy D, Fontaine E, Schwarzenboeck A, et al. Ice crystal sizes in high ice water content clouds. Part Ⅱ: Statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. J Atmos Oceanic Technol, 2017, 34(1): 117-136. doi:  10.1175/JTECH-D-15-0246.1
    [7] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127

    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [8] 郭学良, 方春刚, 卢广献, 等. 2008-2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progress of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [9] 蔡兆鑫, 蔡淼, 李培仁, 等. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究. 大气科学, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htm

    Cai Z X, Cai M, Li P R, et al. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages. Chinese J Atmos Sci, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htm
    [10] 李德泉, 李抗抗, 李宏宇, 等. 飞机作业监测移动应用系统的设计与实现. 应用气象学报, 2019, 30(6): 745-758. doi:  10.11898/1001-7313.20190610

    Li D Q, Li K K, Li H Y, et al. Design and implementation of mobile application fro real-time monitoring of weather-modification aircraft operations. J Appl Meteor Sci, 2019, 30(6): 745-758. doi:  10.11898/1001-7313.20190610
    [11] Hou T, Lei H, Hu Z. A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmos Res, 2010, 96: 447-460. doi:  10.1016/j.atmosres.2010.02.004
    [12] 党娟, 刘卫国, 陶玥. 一次降水性层积云系的微物理特征分析. 高原气象, 2016, 35(6): 1639-1649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201606021.htm

    Dang J, Liu W G, Tao Y. Analysis of cloud microphysical characteristics on a precipitation stratocumulus. Plateau Meteorology, 2016, 35(6): 1639-1649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201606021.htm
    [13] 杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层积混合云微物理特征的飞机观测研究. 大气科学, 2021, 45(1): 1-19.

    Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 1-19.
    [14] 陈琪, 张华, 荆现文, 等. 冰晶粒子不同形状假定对辐射收支和气候的影响. 气象学报, 2017, 75(4): 607-617. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201704007.htm

    Chen Q, Zhang H, Jing X W, et al. Effects of different ice crystal shape assumptions on radiation budget and climate. Acta Meteor Sinca, 2017, 75(4): 607-617. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201704007.htm
    [15] Mitchell D L. Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci, 1996, 53(12): 1710-1723. doi:  10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2
    [16] Mason B J. The shapes of snow crystals-Fitness for purpose?. Quart J Roy Meteor Soc, 1994, 120(518): 849-860.
    [17] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [18] 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206

    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [19] 任建奇, 严卫, 叶晶, 等. 云相态的卫星遥感研究进展. 地球科学进展, 2010, 25(10): 1051-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201010009.htm

    Ren J Q, Yan W, Ye J, et al. Advances in the study of cloud phase discrimination using satellite remote sensing data. Advance in Earth Science, 2010, 25(10): 1051-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201010009.htm
    [20] Hu Y, Winker D, Vaughan M, et al. CALIPSO/CALIOP cloud phase discrimination algorithm. J Atmos Oceanic Technol, 2009, 26(11): 2293-2309. doi:  10.1175/2009JTECHA1280.1
    [21] 楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603

    Lou X F, Fu Y, Sun J. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603
    [22] 郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602

    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
    [23] 董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. doi:  10.11898/1001-7313.20200502

    Dong Q, Zhang F, Zong Z P. Objective precipitation type forcast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi:  10.11898/1001-7313.20200502
    [24] 黄敏松, 雷恒池, 陈家田, 等. 机载光阵探头探测期间云粒子的破碎. 大气科学, 2016, 40(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603016.htm

    Huang M S, Lei H C, Chen J T, et al. Cloud particle shattering during sampling by airborne optical array probes. Chinese J Atmos Sci, 2016, 40(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603016.htm
    [25] 黄敏松, 雷恒池, 金玲. 机载云降水粒子成像仪所测数据中伪粒子的识别. 大气科学, 2017, 41(5): 1113-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201705016.htm

    Huang M S, Lei H C, Jin L. Pseudo particle identification in the image data from the airborne cloud and precipitation particle image probe. Chinese J Atmos Sci, 2017, 41(5): 1113-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201705016.htm
    [26] Holroyd E W. Some techniques and uses of 2D-C habit classification software for snow particles. J Atmos Oceanic Technol, 1987, 4(3): 498-511. doi:  10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2
    [27] 王磊, 李成才, 赵增亮, 等. 二维粒子形状分类技术在云微物理特征分析中的应用. 大气科学, 2014, 38(2): 201-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402001.htm

    Wang L, Li C C, Zhao Z L, et al. Application of 2D habit classification in cloud microphysics analysis. Chinese J Atmos Sci, 2014, 38(2): 201-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402001.htm
    [28] 黄敏松, 雷恒池. 改进的Holroyd云粒子形状识别方法及其应用. 气象学报, 2020, 78(2): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202002011.htm

    Huang M S, Lei H C. An improved Holroyd cloud particle habit identification method and its application. Acta Meteor Sinca, 2020, 78(2): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202002011.htm
    [29] Droplet Measurement Technologies. Data Analysis User's Guide Chapter Ⅱ: Single Particle Imaging. 2009: 1-34.
    [30] Korolev A, Emery E, Creelman K. Modification and tests of particle probe tips to mitigate effects of ice shattering. J Atmos Oceanic Technol, 2013, 30(4): 690-708. doi:  10.1175/JTECH-D-12-00142.1
    [31] Jackson R C, McFarquhar G M, Stith J, et al. An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J Atmos Oceanic Technol, 2014, 31(12): 2567-2590. doi:  10.1175/JTECH-D-13-00239.1
    [32] Field P R, Wood R, Brown P R A, et al. Ice particle interarrival times measured with a fast FSSP. J Atmos Oceanic Technol, 2003, 20(2): 249-261. doi:  10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2
    [33] Field P R, Heymsfield A J, Bansemer A. Shattering and particle interarrival times measured by optical array probes in ice clouds. J Atmos Oceanic Technol, 2006, 23(10): 1357-1371. doi:  10.1175/JTECH1922.1
    [34] 李宏宇, 周旭, 张荣, 等. 不同机载设备观测的气象要素与飞行参数对比分析. 气象, 2020, 46(9): 1154-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm

    Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1154-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
    [35] Bailey M P, Hallett J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS Ⅱ, and other field studies. J Atmos Sci, 2009, 66(9): 2888-2899. doi:  10.1175/2009JAS2883.1
    [36] O'Shea S J, Crosier J, Dorsey J, et al. Revisiting particle sizing using greyscale optical array probes: Evaluation using laboratory experiments and synthetic data. Atmos Meas Tech, 2019, 12(6): 3067-3079. doi:  10.5194/amt-12-3067-2019
    [37] O'Shea S, Crosier J, Dorsey J, et al. Characterising optical array particle imaging probes: Implications for small ice crystal observations. Atmos Meas Tech, 2021, 14(3): 1917-1939. doi:  10.5194/amt-14-1917-2021
    [38] Heymsfield A J, Parrish J L. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J Appl Meteor, 1978, 17(10): 1566-1572. doi:  10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2
    [39] Baumgardner D, Abel S, Axisa D, et al. Cloud ice properties: In situ measurement challenges. Meteor Monogr, 2017, 58: 9.1-9.23. doi:  10.1175/AMSMONOGRAPHS-D-16-0011.1
  • 加载中
图(9) / 表(3)
计量
  • 摘要浏览量:  1751
  • HTML全文浏览量:  570
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-08-27
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回