Fine Observation Characteristics and Thermodynamic Mechanisms of Extreme Heavy Rainfall in Henan on 20 July 2021
-
摘要: 利用分钟降水资料、FY-4A气象卫星高分辨率资料、多普勒天气雷达资料和ERA5再分析资料对2021年“7·20”河南极端暴雨过程中尺度系统精细结构及热动力发展机制进行观测分析和诊断研究, 结果表明: 该过程发生在“两高对峙”的鞍型场弱背景下, 其主导系统为500 hPa弱低压系统和低层偏东风切变线; 极端暴雨主要由水平尺度约300 km呈近乎圆形结构中尺度对流复合体产生, 其长时间维持与内部多个中尺度对流系统的合并及外围东南侧暖湿区新生单体的持续并入有关; 郑州站小时强降水(201.9 mm· h-1)由几乎静止的低质心β中尺度弓状回波产生, 其分钟降水量持续在3~4.7 mm; 边界层风场的动力辐合触发强烈对流, 使得强降水区上空θse锋区长时间处于中性层结, 其高层辐散气流在西北太平洋副热带高压附近构成次级环流下沉支; 中层500 hPa低压区气旋式曲率附近正涡度平流和925 hPa偏东气流持续暖平流输送、低层变形场锋生作用, 以及来自华东近海边界层急流异常强盛的水汽输送是此次极端过程发展维持的热动力学成因。Abstract: The typical circulation configuration, fine structure of mesoscale system and thermodynamic development mechanism of affecting system associated with the extreme heavy rainfall of Henan from 19 July to 21 July in 2021 are analyzed with data which contain minutely automatic weather station observations, FY-4A satellite high-resolution measurements, Doppler radar products and the fifth-generation European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5). Results show that the extreme heavy rainfall occurs under a weaken saddle field which is between the subtropical high and the continental high. The dominant systems are the weak low-pressure system at 500 hPa and easterly shear line at low level. A long-term maintained mesoscale convective cloud plays great roles in the extreme heavy rainfall of Henan, which features a nearly circular structure with a horizontal scale of about 300 km. The long-term maintenance of this cloud is related to the merging of its inside multiple β-mesoscale convective systems. Meanwhile, the confluence of three easterly flows in the east of warm zone in the southeast of the periphery keep triggering new convective cells which are constantly integrated into the mesoscale convective cloud. These two processes lead to the train effect, which is crucial to the extreme heavy rainfall in Henan. The rainfall intensity at Zhengzhou Station is 201.9 mm·h-1, and breaks the hourly rainfall record in inland regions. It is mainly caused by quasi-stationary β-mesoscale convective systems, which show bow echo in Doppler weather radar. The vertical structure of the convective system, which has the strong echo centroid below 5 km in Doppler weather radar, reflects the extremely efficient precipitation. During the extreme rainfall from 1600 BT to 1700 BT on 20 Jul 2021, the minutely continuous precipitation is stable at 3-4.7 mm, and the 5-minute rainfall maximum could reach 21 mm. The strong convection is triggered by the dynamic convergence of the boundary layer wind, leading to the pseudo equivalent temperature (θse) front above the heavy rainfall area maintaining in a neutral stratification of nearly barotropic structure for a long time. Meanwhile, the low-level convergence collocates with the high-level divergence, which benefits an intense ascend through the tropopause. The high-level divergent flow forms a sinking branch of the secondary circulation near the Northwest Pacific subtropical high. The significant positive vorticity advection near the cyclonic circulation at 500 hPa, the continuous warm advection transport by easterly flow at 925 hPa, the frontogenesis of low-level deformation field and the abnormally strong jet water vapor transport from the coast of East China are the thermodynamic mechanisms of the development and maintenance of the extreme heavy rainfall in Henan.
-
图 1 2021年7月18—22日强降水监测 (a)18日08:00—22日08:00累积降水量,(b)20日08:00—21日08:00累积降水量,(c)19日08:00—22日08:00郑州站逐小时降水量,(d)20日15:00—17:59郑州站逐分钟降水(柱状) 和5 min累积降水时序图(蓝色实线)
Fig. 1 Monitoring of heavy rainfall from 18 Jul to 22 Jul in 2021 (a)the accumulative rainfall from 0800 BT 18 Jul to 0800 BT 22 Jul, (b)the rainfall from 0800 BT 20 Jul to 0800 BT 21 Jul, (c)hourly rainfall of Zhengzhou Station from 0800 BT 19 Jul to 0800 BT 22 Jul, (d)minutely rainfall (the column) and accumulative rainfall in 5 minutes (the blue solid line) of Zhengzhou Station from 1500 BT to 1759 BT on 20 Jul
图 6 2021年7月20—21日沿郑州站所在纬度的假相当位温(等值线,单位:K)、垂直速度(填色) 及纬向风(单位:m·s-1) 与垂直速度(单位:10-2 m·s-1) 合成场(箭头) 剖面(黑色三角形为郑州站所在经度位置,蓝色虚线为0 ℃等温线)
Fig. 6 Cross-section of θse (the contour, unit: K), vertical velocity (the shaded) and the combination (the arrow) of zonal wind (unit: m·s-1) and vertical movement (unit: 10-2m·s-1) along Zhengzhou Station from 20 Jul to 21 Jul in 2021 (the black triangle is the longitude position of Zhengzhou Station, the blue dotted line refers to 0℃)
图 10 2021年7月20—21日925 hPa风场距平(风羽)、水汽通量距平(填色) 和水汽通量标准化异常(等值线,Ds≥3,间隔为1)(灰色区域表示地形高于700 m)
Fig. 10 Wind anomalies (the barb), moisture flux anomalies (the shaded) and moisture flux standardized anomalies (the contour, Ds≥3, the interval is 1) at 925 hPa from 20 Jul to 21 Jul in 2021 (the gray denotes the topography higher than 700 m)
-
[1] 李红梅, 周天军, 宇如聪. 近四十年我国东部盛夏日降水特性变化分析. 大气科学, 2008, 32(2): 358-370. doi: 10.3878/j.issn.1006-9895.2008.02.14Li H M, Zhou T J, Yu R C. Analysis of July-August daily precipitation characteristics variation in eastern China during 1958-2000. Chinese J Atmos Sci, 2008, 32(2): 358-370. doi: 10.3878/j.issn.1006-9895.2008.02.14 [2] 刘海文, 丁一汇. 华北夏季降水的年代际变化. 应用气象学报, 2011, 22(2): 129-137. doi: 10.3969/j.issn.1001-7313.2011.02.001Liu H W, Ding Y H. The interdecadal variability of summer precipitation over North China. J Appl Meteor Sci, 2011, 22(2): 129-137. doi: 10.3969/j.issn.1001-7313.2011.02.001 [3] Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate, 2005, 18(18): 1096-1108. [4] Zhu J T. Impact of climate change on extreme rainfall across the United States. J Hydrol Eng, 2013, 18(10): 1301-1305. doi: 10.1061/(ASCE)HE.1943-5584.0000725 [5] 鲍名. 近50年我国持续性暴雨的统计分析及其大尺度环流背景. 大气科学, 2007, 31(5): 779-792. doi: 10.3878/j.issn.1006-9895.2007.05.03Bao M. The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation. Chinese J Atmos Sci, 2007, 31(5): 779-792. doi: 10.3878/j.issn.1006-9895.2007.05.03 [6] 闵屾, 钱永甫. 中国极端降水事件的区域性和持续性研究. 水科学进展, 2008, 19(6): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200806002.htmMin S, Qian Y F. Regionality and persistence of extreme precipitation events in China. Adv Water Sci, 2008, 19(6): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200806002.htm [7] 牛若芸, 刘凑华, 刘为一, 等. 1981—2015年中国95°E以东区域性暴雨过程时、空分布特征. 气象学报, 2018, 76(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201802002.htmNiu R Y, Liu C H, Liu W Y, et al. Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981-2015. Acta Meteor Sinica, 2018, 76(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201802002.htm [8] 周鸣盛. 我国北方50次区域性特大暴雨的环流分析. 气象, 1993, 19(7): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199307003.htmZhou M S. The circulation analysis of regional heavy rainstorms in the north of China. Meteor Mon, 1993, 19(7): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199307003.htm [9] 孙建华, 张小玲, 卫捷, 等. 20世纪90年代华北大暴雨过程特征的分析研究. 气候与环境研究, 2005, 10(3): 492-506. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503019.htmSun J H, Zhang X L, Wei J, et al. A study on severe heavy rainfall in North China during the 1990s. Climatic Environ Res, 2005, 10(3): 492-506. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503019.htm [10] 周璇, 孙继松, 张琳娜, 等. 华北地区持续性极端暴雨过程的分类特征. 气象学报, 2020, 78(5): 761-777. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202005004.htmZhou X, Sun J S, Zhang L N, et al. Classification characteristics of continuous extreme rainfall events in North China. Acta Meteor Sinica, 2020, 78(5): 761-777. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202005004.htm [11] 赵洋洋, 张庆红, 杜宇, 等. 北京"7.21"特大暴雨环流形势极端性客观分析. 气象学报, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htmZhao Y Y, Zhang Q H, Du Y, et al. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteor Sinica, 2013, 71(5): 817-824. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305002.htm [12] 游景炎. 暴雨带内的中尺度系统. 气象学报, 1965, 35(3): 293-304. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196503003.htmYou J Y. The mesoscale systems in heavy rainfall zone. Acta Meteor Sinica, 1965, 35(3): 293-304. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196503003.htm [13] 孙建华, 赵思雄, 傅慎明, 等. 2012年7月21日北京特大暴雨的多尺度特征. 大气科学, 2013, 37(3): 705-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201303014.htmSun J H, Zhao S X, Fu S M, et al. Multi-scale characteristics of record heavy rainfall over Beijing Area on July 21, 2012. Chinese J Atmos Sci, 2013, 37(3): 705-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201303014.htm [14] 雷蕾, 孙继松, 何娜, 等. "7.20"华北特大暴雨过程中低涡发展演变机制研究. 气象学报, 2017, 75(5): 685-699. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705001.htmLei L, Sun J S, He N, et al. A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteor Sinica, 2017, 75(5): 685-699. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705001.htm [15] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [16] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [17] 王瑾, 蒋建莹, 江吉喜. "7·18"济南突发性大暴雨特征. 应用气象学报, 2009, 20(3): 295-302. doi: 10.3969/j.issn.1001-7313.2009.03.005Wang J, Jiang J Y, Jiang J X. A Jinan heavy rainfall on 18 July 2007. J Appl Meteor Sci, 2009, 20(3): 295-302. doi: 10.3969/j.issn.1001-7313.2009.03.005 [18] 侯建忠, 王川, 鲁渊平, 等. 台风活动与陕西极端暴雨的相关特征分析. 热带气象学报, 2006, 22(2): 203-208. doi: 10.3969/j.issn.1004-4965.2006.02.014Hou J Z, Wang C, Lu Y P, et al. Activity of typhoons and extreme rainstorms in Shaanxi Province. J Trop Meteor, 2006, 22(2): 203-208. doi: 10.3969/j.issn.1004-4965.2006.02.014 [19] 康岚, 牛俊丽, 徐琳娜, 等. 台风对四川暴雨影响的环境场对比分析. 气象, 2013, 39(4): 427-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201304005.htmKang L, Niu J L, Xu L N, et al. Comparative analysis on the ambient field of torrential rains impacted by typhoon in Sichuan. Meteor Mon, 2013, 39(4): 427-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201304005.htm [20] 张德二, 梁有叶. 1730年夏季黄淮地区暴雨极端事件研究. 气候变化研究进展, 2016, 12(5): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201605010.htmZhang D E, Liang Y Y. Study of the heavy torrential rain over the Huang-Huai region in eastern China in 1730-An extreme climatic events in history. Adv Climate Change Res, 2016, 12(5): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201605010.htm [21] 雷雨顺. 经向型持续性特大暴雨的合成分析. 气象学报, 1981, 39(2): 168-181. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198102004.htmLei Y S. The compositive analysis of the meridional type persistent severe rainstorms. Acta Meteor Sinica, 1981, 39(2): 168-181. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198102004.htm [22] 孙继松, 何娜, 王国荣, 等. "7.21"北京大暴雨系统的结构演变特征及成因初探. 暴雨灾害, 2012, 31(3): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201203003.htmSun J S, He N, Wang G R, et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012. Torrential Rain Disaster, 2012, 31(3): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201203003.htm [23] 孙军, 谌芸, 杨舒楠, 等. 北京721特大暴雨极端性分析及思考(二) 极端性降水成因初探及思考. 气象, 2012, 38(10): 1267-1277. doi: 10.7519/j.issn.1000-0526.2012.10.013Sun J, Chen Y, Yang S N, et al. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing Part Ⅱ: Preliminary causation analysis and thinking. Meteor Mon, 2012, 38(10): 1267-1277. doi: 10.7519/j.issn.1000-0526.2012.10.013 [24] 柳艳菊, 丁一汇, 张颖娴, 等. 季风暖湿输送带与北方冷空气对"7·21"暴雨的作用. 热带气象学报, 2015, 31(6): 721-732. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201506001.htmLiu Y J, Ding Y H, Zhang Y X, et al. Role of a warm and wet transport belt of Asian summer monsoon and cold air from north in the Beijing July 21 heavy rainstorm. J Trop Meteor, 2015, 31(6): 721-732. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201506001.htm [25] 谌芸, 孙军, 徐珺, 等. 北京721特大暴雨极端性分析及思考(一) 观测分析及思考. 气象, 2012, 38(10): 1255-1266. doi: 10.7519/j.issn.1000-0526.2012.10.012Chen Y, Sun J, Xu J, et al. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing Part Ⅰ: Observation and thinking. Meteor Mon, 2012, 38(10): 1255-1266. doi: 10.7519/j.issn.1000-0526.2012.10.012 [26] 方翀, 毛冬艳, 张小雯, 等. 2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析. 气象, 2012, 38(10): 1278-1287. doi: 10.7519/j.issn.1000-0526.2012.10.014Fang C, Mao Y D, Zhang X W, et al. Analysis on the mesoscale convective conditions and characteristics of an extreme torrential rain in Beijing on 21 July 2012. Meteor Mon, 2012, 38(10): 1278-1287. doi: 10.7519/j.issn.1000-0526.2012.10.014 [27] 俞小鼎. 2012年7月21日北京特大暴雨成因分析. 气象, 2012, 38(11): 1313-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211003.htmYu X D. Investigation of Beijing extreme flooding event on 21 July 2012. Meteor Mon, 2012, 38(11): 1313-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211003.htm [28] 王淑莉, 康红文, 谷湘潜, 等. 北京7·21暴雨暖区中尺度对流系统的值模拟. 气象, 2015, 41(5): 544-553. doi: 10.3969/j.issn.1000-6362.2015.05.003Wang S L, Kang H W, Gu X Q, et al. Numerical simulation of mesoscale convective system in the warm sector of Beijing "7.21" severe rainstorm. Meteor Mon, 2015, 41(5): 544-553. doi: 10.3969/j.issn.1000-6362.2015.05.003 [29] 孟智勇, 唐晓静, 岳健, 等. 地面和探空资料的EnKF同化对北京7·21极端暴雨模拟的影响. 北京大学学报, 2019, 55(2): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201902005.htmMeng Z Y, Tang X J, Yue J, et al. Impact of EnKF surface and rawinsonde data assimilation on the simulation of the extremely heavy rainfall in Beijing on July 21, 2012. Acta Sci Nat Univ Pekin, 2019, 55(2): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201902005.htm [30] 孙淑清, 纪立人. 凝结潜热对大尺度流场影响的数值试验. 科学通报, 1986, 31(14): 1090-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198614013.htmSun S Q, Ji L R. The numerical experiment of latent heat condensation effect on large scale flow field. Chin Sci Bull, 1986, 31(14): 1090-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198614013.htm [31] 梁丰, 陶诗言. 1998年7月河套气旋强烈发展时的暴雨过程分析. 应用气象学报, 2007, 18(5): 577-585. doi: 10.3969/j.issn.1001-7313.2007.05.001Liang F, Tao S Y. Diagnosis of a heavy rain event caused by the intense development of Yellow River cyclone in July, 1998. J Appl Meteor Sci, 2007, 18(5): 577-585. doi: 10.3969/j.issn.1001-7313.2007.05.001 [32] 何立富, 陈涛, 孔期. 华南暖区暴雨研究进展. 应用气象学报, 2016, 27(5): 559-569. doi: 10.11898/1001-7313.20160505He L F, Chen T, Kong Q. A review of studies on prefrontal torrential rain in South China. J Appl Meteor Sci, 2016, 27(5): 559-569. doi: 10.11898/1001-7313.20160505 [33] 栗晗, 王新敏, 张霞, 等. 河南"7·19"豫北罕见特大暴雨降水特征及极端性分析. 气象, 2018, 44(9): 1136-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201809002.htmLi H, Wang X M, Zhang X, et al. Analysis on extremity and characteristics of the 19 July 2016 severe torrential rain in the north of Henan Province. Meteor Mon, 2018, 44(9): 1136-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201809002.htm [34] 倪允琪, 周秀骥, 张人禾, 等. 我国南方暴雨的试验与研究. 应用气象学报, 2006, 17(6): 690-704. doi: 10.3969/j.issn.1001-7313.2006.06.007Ni Y Q, Zhou X J, Zhang R H, et al. Experiments and studies for heavy rainfall in southern China. J Appl Meteor Sci, 2006, 17(6): 690-704. doi: 10.3969/j.issn.1001-7313.2006.06.007 [35] 孙素琴, 郑婧, 支树林, 等. 一次由"列车效应"引发的梅雨锋暴雨研究. 高原气象, 2015, 34(1): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501020.htmSun S Q, Zheng J, Zhi S L, et al. Analysis of a Meiyu-front rainstorm caused by "train effect". Plateau Meteor, 2015, 34(1): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501020.htm [36] 吴庆梅, 刘卓, 王国荣, 等. 一次华北暴雨过程中边界层东风活动及作用. 应用气象学报, 2015, 26(2): 160-172. doi: 10.11898/1001-7313.20150204Wu Q M, Liu Z, Wang G R, et al. The influence of boundary layer east wind on a North China rainstorm. J Appl Meteor Sci, 2015, 26(2): 160-172. doi: 10.11898/1001-7313.20150204 [37] 李明华, 陈芳丽, 姜帅, 等. "18.8"粤东暴雨中心极端强降水"列车效应"分析. 暴雨灾害, 2019, 38(4): 329-337. doi: 10.3969/j.issn.1004-9045.2019.04.005Li M H, Chen F L, Jiang S, et al. The analysis of train effect features of a record-breaking severe rainfall in eastern region of Guangdong in August 2018. Torrential Rain Disaster, 2019, 38(4): 329-337. doi: 10.3969/j.issn.1004-9045.2019.04.005 [38] 陈芳丽, 姜帅, 李明华, 等. 边界层急流在粤东暴雨中心两次极端强降水过程中的作用. 气象, 2021, 47(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103003.htmChen F L, Jiang S, Li M H, et al. The role of boundary layer jet in two severe rainfalls over eastern region of Guangdong Province. Meteor Mon, 2021, 47(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103003.htm [39] 季晓东, 漆梁波. ECMWF模式降水预报与极端天气预报指数在暴雨预报中的评估与应用. 暴雨灾害, 2018, 37(6): 566-573. doi: 10.3969/j.issn.1004-9045.2018.06.010Ji X D, Qi L B. Evaluation and application of ECMWF model precipitation and extreme weather forecast index of precipitation on heavy rainfall forecast. Torrential Rain Disaster, 2018, 37(6): 566-573. doi: 10.3969/j.issn.1004-9045.2018.06.010 [40] 翟盘茂, 李蕾, 周佰铨, 等. 江淮流域持续性极端降水及预报方法研究进展. 应用气象学报, 2016, 27(5): 631-640. doi: 10.11898/1001-7313.20160511Zhai P M, Li L, Zhou B Q, et al. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze-Huai River Valley. J Appl Meteor Sci, 2016, 27(5): 631-640. doi: 10.11898/1001-7313.20160511 [41] 罗玲, 娄小芬, 傅良, 等. ECMWF极端降水预报指数在华东台风暴雨中的应用研究. 气象, 2019, 45(10): 1382-1391. doi: 10.7519/j.issn.1000-0526.2019.10.005Luo L, Lou X F, Fu L, et al. Application of precipitation extreme forecast index from ECMWF in typhoon rainstorm in East China. Meteor Mon, 2019, 45(10): 1382-1391. doi: 10.7519/j.issn.1000-0526.2019.10.005 [42] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803 [43] Hart R, Grumm R. Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon Wea Rev, 2001, 129(9): 2426. doi: 10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2 [44] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第3版). 北京: 气象出版社, 2000.Zhu Q G, Lin J R, Shou S W, et al. The Principle and Method of Weather(3rd Ed). Beijing: China Meteorological Press, 2000. [45] 曾智琳, 谌芸, 王东海. 2018年8月华南超历史极值降水事件的观测分析与机理研究. 大气科学, 2020, 44(4): 695-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004002.htmZeng Z L, Chen Y, Wang D H. Observation and mechanism analysis for a record-breaking heavy rainfall event over Southern China in August 2018. Chinese J Atmos Sci, 2020, 44(4): 695-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004002.htm