留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双偏振相控阵雷达误差评估与相态识别方法

李哲 吴翀 刘黎平 宗蓉 罗鸣

李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102..
引用本文: 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102.
Li Zhe, Wu Chong, Liu Liping, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102.
Citation: Li Zhe, Wu Chong, Liu Liping, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102.

双偏振相控阵雷达误差评估与相态识别方法

DOI: 10.11898/1001-7313.20220102
资助项目: 

国家自然科学基金项目 41875036

国家重点研发计划 2018YFC1507400

详细信息
    通信作者:

    吴翀, wuchong@cma.gov.cn

Error Evaluation and Hydrometeor Classification Method of Dual Polarization Phased Array Radar

  • 摘要: 选取2020年3—9月深圳求雨坛的X波段双偏振相控阵雷达探测数据, 与同位置的S波段双偏振雷达进行对比。通过一定限制条件定量分析引入误差的原因, 发现反射率因子ZH和差分反射率ZDR的标定误差和随机误差较大, 其中ZH误差变化范围为-0.5~4.5 dB, ZDR误差变化范围为-0.7~0.2 dB。在上述较大误差影响下, 传统模糊逻辑相态识别方法的水凝物相态识别结果不可靠, 因此根据不同相态的雷达参量特征范围以及融化层高度建立基本结构为二叉树的决策树相态识别方法。针对上述方法的实际应用效果, 分别从水凝物相态识别结果对误差的敏感性和空间分布的合理性进行评估, 结果表明: 决策树相态识别方法的水凝物相态识别结果稳定性高于模糊逻辑相态识别方法, 且在对流云中的水凝物相态分布更加合理, 能够发挥X波段双偏振相控阵雷达在研究云内水凝物相态演变的优势。
  • 图  1  DHC方法流程

    Fig. 1  Flow chart of DHC method

    图  2  2020年3月18日10:30 X-PAR与S-POL的ZHZDR水平结构

    (相邻距离圈间距为15 km,+为雷达位置)

    Fig. 2  The horizontal structure of ZH and ZDR of X-PAR and S-POL at 1030 BT 18 Mar 2020

    (the distance between adjacent circles is 15 km, + denotes the location of radar)

    图  3  X-PAR的ZHZDR随机误差对比频次及误差量级占比

    Fig. 3  ZH and ZDR random error comparison frequency and error magnitude ratio of X-PAR

    图  4  X-PAR的ZHZDR标定误差对比频次及误差量级占比

    Fig. 4  ZH and ZDR calibration error comparison frequency and error magnitude ratio of X-PAR

    图  5  X-PAR的ZHZDR衰减订正误差对比频次及误差量级占比

    Fig. 5  ZH and ZDR attenuation correction error frequency and error magnitude ratio of X-PAR

    图  6  X-PAR的ZHZDR波束展宽误差对比频次及误差量级占比

    Fig. 6  ZH and ZDR beam broadening error frequency and error magnitude ratio of X-PAR

    图  7  ZH分别引入系统误差和随机误差后相态变化率

    Fig. 7  Phase change rate after introducing system error and random error to ZH

    图  8  2020年3月18日09:37 X-PAR和S-POL的ZHρhvZDR水平结构(6.3°仰角)

    Fig. 8  The horizontal structure of ZH, ρhv and ZDR of X-PAR and S-POL at 0937 BT 18 Mar 2020 (the elevation: 6.3°)

    图  9  DHC方法和FHC方法对于2020年3月18日09:37 X-PAR和S-POL探测水凝物相态识别结果

    (6.3°仰角)

    Fig. 9  Hydrometeor classification results of DHC method and FHC method in X-PAR and S-POL at 0937 BT 18 Mar 2020

    (the elevation: 6.3°)

    图  10  2020年5月11日23:00 X-PAR和S-POL的ZH, ρhvZDR水平结构

    (6.3°仰角, 相邻距离圈间距为15 km,+为雷达位置)

    Fig. 10  The horizontal structure of ZH, ρhv and ZDR of X-PAR and S-POL at 2300 BT 11 May 2020

    (the elevation: 6.3°, the distance between adjacent circles is 15 km, + deontes the location of radar)

    图  11  DHC方法和FHC方法对于2020年5月11日23:00 X-PAR和S-POL探测水凝物相态识别结果

    (6.3°仰角, 相邻距离圈间距为15 km,+为雷达位置)

    Fig. 11  Hydrometeor classification results of DHC method and FHC method in X-PAR and S-POL at 2300 BT 11 May 2020

    (the elevation: 6.3°, the distance between adjacent circles is 15 km, + deontes the location of radar)

    表  1  X-PAR不同误差的限制条件

    Table  1  Limiting conditions for different errors of X-PAR

    误差种类 表征误差的变量 限制条件
    数据处理 距离 ΦDP 其他限制
    标定误差 时间 滤波 20~30 km ≤5° 仰角(X-PAR: 4.5°,S-POL: 4.3°)
    仰角 滤波 20~30 km ≤5° 去除标定随时间的误差
    衰减订正误差 ΦDP 滤波 25~30 km ≥5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    波束展宽误差 距离 滤波 所有距离 ≤5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    随机误差 ZH标准差、ZDR标准差 未滤波 20~30 km ≤5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    下载: 导出CSV
  • [1] 张光义. 相控阵雷达原理. 北京: 国防工业出版社, 2009: 13-21.

    Zhang G Y. Principles of Phased array Radar. Beijing: National Defense Industry Press, 2009: 13-21.
    [2] 吴翀, 刘黎平, 汪旭东, 等. 相控阵雷达扫描方式对回波强度测量的影响. 应用气象学报, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003

    Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [3] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101

    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [4] 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206

    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [5] 刘黎平, 吴林林, 吴翀, 等. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析. 大气科学, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm

    Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-Band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
    [6] 刘俊, 黄兴友, 何雨芩, 等. X波段相控阵气象雷达回波数据的对比分析. 高原气象, 2015, 34(4): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504028.htm

    Liu J, Huang X Y, He Y Q, et al. Comparative analysis of X-Band phased array antenna weather radar measurements. Plateau Meteorology, 2015, 34(4): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504028.htm
    [7] 刘黎平, 吴翀, 汪旭东, 等. X波段一维扫描有源相控阵天气雷达测试定标方法. 应用气象学报, 2015, 26(2): 129-140. doi:  10.11898/1001-7313.20150201

    Liu L P, Wu C, Wang X D, et al. Test and calibration methods for X-band active phased-array weather radar. J Appl Meteor Sci, 2015, 26(2): 129-140. doi:  10.11898/1001-7313.20150201
    [8] Ryzhkov A V, Schuur T J, Burgess D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6): 809-824. doi:  10.1175/BAMS-86-6-809
    [9] Park S G, Bringi V N, Chandrasekar V, et al. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J Atmos Oceanic Technol, 2005, 22(11): 1621-1632. doi:  10.1175/JTECH1803.1
    [10] 杨金红, 高玉春, 程明虎, 等. 相控阵天气雷达波束特性. 应用气象学报, 2009, 20(1): 119-123. doi:  10.3969/j.issn.1001-7313.2009.01.016

    Yang J H, Gao Y C, Cheng M H, et al. Beam characteristics analysis on phased array weather radar. J Appl Meteor Sci, 2009, 20(1): 119-123. doi:  10.3969/j.issn.1001-7313.2009.01.016
    [11] 张蔚然, 吴翀, 刘黎平, 等. 双偏振相控阵雷达与业务雷达的定量对比及观测精度研究. 高原气象, 2021, 40(2): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102019.htm

    Zhang W R, Wu C, Liu L P, et al. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar. Plateau Meteorology, 2021, 40(2): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102019.htm
    [12] Zadeh L A. Fuzzy algorithms. Information & Control, 1968, 12(2): 94-102.
    [13] Straka M J, Zrnic D S. An Algorithm to Deduce Hydrometeor Types and Contents from Multiparameter Radar Data//26th Conference on Radar Meteorology, 1993: 513-515.
    [14] Zrnic D S, Ryzhkov A, Straka J, et al. Testing a procedure for automatic classification of hydrometeor types. J Atmos Oceanic Technol, 2001, 18(6): 892-913. doi:  10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2
    [15] 曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究. 大气科学, 2005, 29(5): 827-836. doi:  10.3878/j.issn.1006-9895.2005.05.15

    Cao J W, Liu L P, Ge R S. A Study of fuzzy logic method in classification of hydrometeors based on polarimetric radar measurement. Chinese J Atmos Sci, 2005, 29(5): 827-836. doi:  10.3878/j.issn.1006-9895.2005.05.15
    [16] Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748.
    [17] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别方法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarization radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [18] Hunt E B, Marin J, Stone P J. Experiments in Induction. New York: Academic Press, 1966.
    [19] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [20] 王洪, 孔凡铀, Jung Youngsun, 等. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504

    Wang H, Kong F Y, Jung Y S, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504
    [21] 蔡启铭, 徐宝祥, 刘黎平. 降雨强度、雨区衰减与双线偏振雷达观测量关系的研究. 高原气象, 1990, 9(4): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199004000.htm

    Cai Q M, Xu B X, Liu L P. A study of the relation between raininess, extinction of rain cloud and parameters measured by a dual linear polarization radar. Plateau Meteorology, 1990, 9(4): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199004000.htm
    [22] Giangrande S E, Krause J M, Ryzhkov A V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteor Climatol, 2008, 47(5): 1354-1364. doi:  10.1175/2007JAMC1634.1
    [23] 肖艳姣, 刘黎平. 三维雷达反射率资料用于层状云和对流云的识别研究. 大气科学, 2007, 31(4): 645-654. doi:  10.3878/j.issn.1006-9895.2007.04.09

    Xiao Y J, Liu L P. Identification of stratiform and convective cloud using 3D radar reflectivity data. Chinese J Atmos Sci, 2007, 31(4): 645-654. doi:  10.3878/j.issn.1006-9895.2007.04.09
    [24] 丁青兰, 刘黎平, 葛润生, 等. 双线偏振多普勒雷达测量精度的理论分析. 应用气象学报, 2003, 14(1): 30-38. doi:  10.3969/j.issn.1001-7313.2003.01.004

    Ding Q L, Liu L P, Ge R S, et al. Theoretical analysis of measurement accuracy of dual linear polarization Doppler radar. J Appl Meteor Sci, 2003, 14(1): 30-38. doi:  10.3969/j.issn.1001-7313.2003.01.004
    [25] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605

    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
  • 加载中
图(11) / 表(1)
计量
  • 摘要浏览量:  1220
  • HTML全文浏览量:  239
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-11-16
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回