留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北上台风强降水形成机制及微物理特征

李欣 张璐

李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103..
引用本文: 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103.
Li Xin, Zhang Lu. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103.
Citation: Li Xin, Zhang Lu. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103.

北上台风强降水形成机制及微物理特征

DOI: 10.11898/1001-7313.20220103
资助项目: 

山东省自然科学基金项目 ZR2021QD028

青岛市气象局面上课题 2018qdqx-m01

详细信息
    通信作者:

    李欣, lixin_nju@163.com

Formation Mechanism and Microphysics Characteristics of Heavy Rainfall Caused by Northward-moving Typhoons

  • 摘要: 利用NCEP FNL分析资料、青岛降水现象仪和双偏振雷达观测资料, 对北上台风利奇马(1909)和巴威(2008)引发的局地对流性强降水微物理特征进行分析, 结果表明: 在台风外围的东南暖湿气流内, 受地形或边界层锋区触发形成的强对流单体后向传播或原地合并加强造成了局地强降水; 雨滴的质量加权平均直径(Dm)和对数归一化浓度(lgNw)分别为1.89 mm和3.86, 与典型台风降水相比平均直径更大、浓度更低, 形状参数μ和斜率Λμ-Λ关系也有明显不同; 随着雨强增强, 小雨滴占比下降而中到大雨滴比例明显上升, 直径1~4 mm雨滴对短时强降水的贡献超过90%;雨滴的碰并增长和对云水的聚集作用在对流性降水中占主导地位, 同时深厚的凇附过程对极端强降水的出现也起到了重要作用。
  • 图  1  台风路径、地形高度和降水分布  (a)利奇马和巴威逐小时中心位置(方框表示图1b~1d范围),(b)青岛地区地形海拔高度(阴影)、S波段双偏振雷达(SPOL) 和降水现象仪(PPI)位置(圆圈表示雷达50 km,100 km和150 km距离圈),(c)2019年8月11日00:00—16:00自动雨量站累积降水量(填色站点;方框表示最大小时雨强出现的站点),(d)2020年8月26日02:00—18:00自动雨量站累积降水量(说明同图1c)

    Fig. 1  The typhoon track, terrain height and precipitation distribution   (a)the tracks of Typhoon Lekima and Typhoon Bavi from China Meteorological Administrator (the box denotes the range in next 3 panels), (b)terrain height of Qingdao (the shaded), location of Qingdao S-band polarimetric radar (SPOL) and precipitation phenomenon instrument(PPI) (black circles denote radius of 50 km, 100 km and 150 km), (c)accumulated precipitation of automatic rain gauges (colorful dots) from 0000 BT to 1600 BT on 11 Aug 2019 (the box denotes the station with maximum hourly precipitation), (d)accumulated precipitation of automatic rain gauges from 0200 BT to 1800 BT on 26 Aug 2020 (the same as in Fig. 1c)

    图  2  水平风场(风羽)、假相当位温(填色) 和垂直速度(等值线,单位: Pa·s-1) 沿36°N纬向-垂直剖面(三角形表示最大小时雨强站点经度)  (a)2019年8月11日02:00,(b)2020年8月26日08:00

    Fig. 2  Cross-section of horizontal wind (the barb) and pseudo-equivalent potential temperature (the shaded) and vertical velocity (the contour, unit: Pa·s-1) along 36°N at 0200 BT on 11 Aug 2019(a) and 0800 BT on 26 Aug 2020(b)

    (the triangle denotes the longitude of station with maximum hourly precipitation)

    图  3  主要降水阶段青岛雷达组合反射率因子

    (填色,30 dBZ以下回波未显示;方框表示对流降水微物理特征分析范围)

    Fig. 3  Composite reflectivity factor during main precipitation stage

    (the shaded, echoes below 30 dBZ are not shown; the box denotes the region of microphysics analysis)

    图  4  降水现象仪反演的雨滴谱特征  (a)利奇马和巴威降水Dm-lgNw散点图(橙色菱形表示对流性降水的平均Dm和lgNw,其余各形状点代表不同台风个例的平均值,实线(虚线)方框表示海洋型(大陆型)对流性降水Dm-lgNw平均值分布范围,灰色虚线表示10 mm·h-1雨强位置),(b)利奇马和巴威5 mm·h-1以上降水(黑色实线) 的μ-Λ关系(彩色虚线表示不同台风个例降水的μ-Λ关系),(c)不同雨强下不同直径雨滴对数浓度Nt的贡献率,(d)同图 1c,但为对降水量R的贡献率

    Fig. 4  Raindrop characteristics based on the PPI observation   (a)scatterplot of Dm-lgNw for Typhoon Lekima and Typhoon Bavi (the averaged Dm-lgNw pairs for convective rain of different cases are given by corresponding shape, orange diamond represents average value of Lekima and Bavi, the solid(dashed) rectangle corresponds to the maritime (continental) convective cluster, the gray dashed line indicates the rainfall rate of 10 mm·h-1) (b)scatterplot of μ-Λ for Lekima and Bavi (the black solid line is the relation derived from black scatter points(R1h>5 mm·h-1), colorful dashed lines are for different cases), (c)the contribution of raindrops in different size to Nt in different rain rate, (d)the same as in Fig. 1c, but for rainfall(R)

    图  5  对流性降水区域(图 3中方框) ZHZDRKDP的垂直概率分布(填色) 和平均垂直廓线(黑色实线)

    Fig. 5  Vertical probability distributions (the shaded) and average profiles (the black solid line) of ZH, ZDR, KDP in the convective area (the box in Fig. 3) of Typhoon Lekima and Typhoon Bavi

    图  6  对流性降水区域(图 3中方框) 各类型粒子占比随高度分布

    Fig. 6  Frequency of each hydrometer class changing with height in the convective area (the box in Fig. 3) of Typhoon Lekima and Typhoon Bavi

    图  7  对流性降水区域(图 3中方框) 主要粒子相态及固态水含量和液态水含量的时间-高度分布

    (利奇马为2019年8月11日03:00—13:00,巴威为2020年8月26日08:00—15:00)

    Fig. 7  Dominant hydrometeor class profile and average profiles of ice water content and liquid water content in the convective area (the box in Fig. 3) of Typhoon Lekima

    (from 0300 BT to 1300 BT on 11 Aug 2019) and Typhoon Bavi (from 0800 BT to 1500 BT on 26 Aug 2020)

  • [1] 陈联寿. 登陆台风特大暴雨成因分析. 气象, 1977, 3(11): 10-12. doi:  10.7519/j.issn.1000-0526.1977.11.007

    Chen L S. The analysis of severe torrential rainfall in landing typhoon. Meteor Mon, 1977, 3(11): 10-12. doi:  10.7519/j.issn.1000-0526.1977.11.007
    [2] 林毅, 刘铭, 刘爱鸣, 等. "龙王"台风中尺度暴雨成因分析. 气象, 2007, 33(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200702003.htm

    Lin Y, Liu M, Liu A M, et al. Causation analysis of mesoscale heavy rain triggered by Typhoon "Longwang". Meteor Mon, 2007, 33(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200702003.htm
    [3] 陈艳, 宿海良, 寿绍文, 等. 麦莎台风造成冀东大暴雨的数值模拟和诊断分析. 应用气象学报, 2008, 19(2): 209-218. doi:  10.3969/j.issn.1001-7313.2008.02.011

    Chen Y, Su H L, Shou S W, et al. Numerical simulation and diagnosis analysis on heavy rain in east Hebei by Typhoon Matsa. J Appl Meteor Sci, 2008, 19(2): 209-218. doi:  10.3969/j.issn.1001-7313.2008.02.011
    [4] 安成, 袁金南, 蒙伟光, 等. 登陆的0915号热带气旋"巨爵"降水分布及其中尺度结构的分析. 热带气象学报, 2013, 29(5): 727-736. doi:  10.3969/j.issn.1004-4965.2013.05.003

    An C, Yuan J N, Meng W G, et al. An analysis of distribution and mesoscale structure of precipitation about landfalling tropical cyclone No. 0915-"Koppu". J Trop Meteor, 2013, 29(5): 727-736. doi:  10.3969/j.issn.1004-4965.2013.05.003
    [5] 曹晓岗, 王慧. "8·23—24"上海远距离台风大暴雨影响分析. 气象, 2016, 42(10): 1184-1210. doi:  10.7519/j.issn.1000-0526.2016.10.003

    Cao X G, Wang H. Analysis on a tropical cyclone remote rain event in Shanghai in 23-24 August 2015. Meteor Mon, 2016, 42(10): 1184-1210. doi:  10.7519/j.issn.1000-0526.2016.10.003
    [6] 段晶晶, 钱燕珍, 周福, 等. 台风灿鸿造成浙江东北部大暴雨地形作用的数值模拟研究. 气象, 2017, 43(6): 686-695. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706005.htm

    Duan J J, Qian Y Z, Zhou F, et al. Numerical simulation of topographic effect on heavy rainfall in northeastern Zhejiang caused by Typhoon Chan-Hom. Meteor Mon, 2017, 43(6): 686-695. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706005.htm
    [7] 林毅, 陈思学, 吕思思. 1601号"尼伯特"台风特大暴雨的中尺度系统特征和成因分析. 暴雨灾害, 2017, 36(6): 542-549. doi:  10.3969/j.issn.1004-9045.2017.06.007

    Lin Y, Chen S X, Lü S S. Mesoscale system characteristics and cause analysis of an excessive rainstorm event triggered by super Typhoon Nepartak. Torr Rain Dis, 2017, 36(6): 542-549. doi:  10.3969/j.issn.1004-9045.2017.06.007
    [8] 王承伟, 齐铎, 徐玥, 等. 冷空气侵入台风"灿鸿"引发的东北暴雨分析. 高原气象, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm

    Wang C W, Qi D, Xu Y, et al. Analysis of rainstorm induced by interaction between Typhoon Chan-Hom (2015) and cold air in Northeast China. Plateau Meteor, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm
    [9] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征. 应用气象学报, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306

    Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306
    [10] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [11] 丛春华, 陈联寿, 雷小途, 等. 台风远距离暴雨的研究进展. 热带气象学报, 2011, 27(1): 264-270. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201102016.htm

    Cong C H, Chen L S, Lei X T, et al. An overview on the study of tropical cyclone remote rainfall. J Trop Meteor, 2011, 27(1): 264-270. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201102016.htm
    [12] 陈联寿, 孟智勇, 丛春华. 台风暴雨落区研究综述. 海洋气象学报, 2017, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201704001.htm

    Chen L S, Meng Z Y, Cong C H. An overview on the research of typhoon rainfall distribution. J Marine Meteor, 2017, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201704001.htm
    [13] 梁军, 李英, 张胜军, 等. 辽东半岛热带气旋暴雨的中尺度结构及复杂地形的影响. 高原气象, 2014, 33(4): 1154-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404029.htm

    Liang J, Li Y, Zhang S J, et al. Mesoscale structure of torrential rain tropical cyclone over Liaodong Peninsula and the effect of complicated topography. Plateau Meteor, 2014, 33(4): 1154-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404029.htm
    [14] 刘还珠, 陈德辉, 滕俏彬. 不同物理过程参数化对模式台风的影响及其动力结构的研究. 应用气象学报, 1998, 9(2): 141-150. http://qikan.camscma.cn/article/id/19980221

    Liu H Z, Chen D H, Teng Q B. Researches on the influence of parameterization of physical process on modeling typhoon and its dynamical structure. J Appl Meteor Sci, 1998, 9(2): 141-150. http://qikan.camscma.cn/article/id/19980221
    [15] 屈右铭, 蔡荣辉, 朱立娟, 等. 云分析系统在台风莫拉菲数值模拟中的应用. 应用气象学报, 2012, 23(5): 551-561. doi:  10.3969/j.issn.1001-7313.2012.05.005

    Qu Y M, Cai R H, Zhu L J, et al. Application of cloud analysis system to Typhoon Molave simulation. J Appl Meteor Sci, 2012, 23(5): 551-561. doi:  10.3969/j.issn.1001-7313.2012.05.005
    [16] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405

    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [17] Ulbrich C W, Lee L G. Rainfall characteristics associated with the remnants of tropical storm Helene in upstate South Carolina. Wea Forecasting, 2002, 17(6): 1257-1267. doi:  10.1175/1520-0434(2002)017<1257:RCAWTR>2.0.CO;2
    [18] Maeso J, Bringi V N, Cruz-Pol S, et al. DSD Characterization and Computations of Expected Reflectivity Using Data from a Two Dimensional Video Disdrometer Deployed in a Tropical Enviroment Proc Int Geoscience and Remote Sensing Symp, Seoul, South Korea, IEEE, 2005: 5073-5076.
    [19] Tokay A, Bashor P G, Habib E, et al. Raindrop size distribution measurements in tropical cyclones. Mon Wea Rev, 2008, 136: 1669-1685. doi:  10.1175/2007MWR2122.1
    [20] Wang M J, Zhao K, Xue M, et al. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 2016, 121: 12415-12433. doi:  10.1002/2016JD025307
    [21] Wen L, Zhao K, Chen G, et al. Drop size distribution characteristics of seven typhoons in China. J Geophys Res Atmos, 2018, 123: 6529-6548. doi:  10.1029/2017JD027950
    [22] Bao X W, Wu L G, Tang B, et al. Variable raindrop size distributions in different rainbands associated with Typhoon Fitow(2013). J Geophys Res Atmos, 2019, 124: 12262-12281. doi:  10.1029/2019JD030268
    [23] Bao X W, Wu L G, Zhang S, et al. Distinct raindrop size distributions of convective inner- and outer-rainband rain in Typhoon Maria(2018). J Geophys Res Atmos, 2020, 125, e2020JD032482. doi:  10.1029/2020JD032482
    [24] Zheng H P, Zhang Y, Zhang L F, et al. Precipitation microphysical processes in the inner rainband of tropical cyclone Kajiki(2019) over the South China Sea revealed by polarimetric radar. Adv Atmos Sci, 2021, 38: 65-80. doi:  10.1007/s00376-020-0179-3
    [25] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60: 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [26] Chang W Y, Wang T C C, Lin P L. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J Atmos Oceanic Technol, 2009, 26: 1973-1993. doi:  10.1175/2009JTECHA1236.1
    [27] Chen B J, Wang Y, Ming J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot(2009). J Tropical Meteor, 2012, 18: 162-171. http://www.cnki.com.cn/Article/CJFDTotal-RQXB201202008.htm
    [28] 朱红芳, 杨祖祥, 王东勇, 等. 进入内陆的两个台风降水特征对比分析. 气象学报, 2019, 77(2): 268-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902008.htm

    Zhu H F, Yang Z X, Wang D Y, et al. Comparative analysis of the rainstorms caused by two typhoons in inland China. Acta Meteor Sinica, 2019, 77(2): 268-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902008.htm
    [29] 申高航, 高安春, 李君. 台风"利奇马"不同强降水中心的雨滴谱特征分析. 气象科学, 2020, 40(1): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001011.htm

    Shen G H, Gao A C, Li J. Analysis of the characteristics of raindrop spectrum in different heavy precipitation centers caused by Typhoon "Lekima". J Meteor Sci, 2020, 40(1): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001011.htm
    [30] 申高航, 高安春, 李君. 雨滴谱及双偏振雷达等资料在一次强降水过程中的应用. 气象, 2021, 47(6): 737-745. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106009.htm

    Shen G H, Gao A C, Li J. Application of raindrop spectrum and dual polarization radar data to a heavy rain process. Meteor Mon, 2021, 47(6): 737-745. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106009.htm
    [31] 沈瑾, 楚荣忠, 赵果, 等. 台风莫拉克的偏振参量演变分析. 高原气象, 2011, 30(3): 809-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103028.htm

    Shen J, Chu R Z, Zhao G, et al. Evolution of polarimetric parameters in Typhoon 'Morakot'. Plateau Meteor, 2011, 30(3): 809-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103028.htm
    [32] Wang M J, Zhao K, Lee W C, et al. Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo(2014) after landfall. J Geophys Res Atmos, 2018, 123: 6549-6564.
    [33] Wu D, Zhao K, Kumjian M R, et al. Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon Wea Rev, 2018, 146: 2147-2159. doi:  10.1175/MWR-D-17-0320.1
    [34] Hu J X, Rosenfeld D, Ryzhkov A, et al. Synergetic use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes. J Appl Meteor Climatol, 2020, 59: 1051-1068. doi:  10.1175/JAMC-D-19-0122.1
    [35] Brandes E A, Zhang G F, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical enviroment. J Appl Meteor Climatol, 2002, 41: 674-685. doi:  10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
    [36] Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19: 602-617. doi:  10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
    [37] Thurai M, Bringi V N. Drop axis ratios from 2D video disdrometer. J Atmos Oceanic Technol, 2005, 22: 966-978. doi:  10.1175/JTECH1767.1
    [38] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22: 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [39] Zhang G F, Vivekanandan J, Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 2001, 39: 830-841. doi:  10.1109/36.917906
    [40] Vivekanandan J, Zhang G F, Brandes E. Polarimetric radar estimators based on a constrained gamma drop size distribution model. J Appl Meteor Climatol, 2004, 43: 217-230. doi:  10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2
    [41] 李欣, 张璐. 青岛地区短时强降水雷达回波特征与中小尺度系统分析. 气象科技, 2020, 46(3): 387-395. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003013.htm

    Li X, Zhang L. Radar echo characteristics and meso-microscale systems of short-term strong rainfall in Qingdao. Meteor Sci Technol, 2020, 46(3): 387-395. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003013.htm
    [42] Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24: 730-748. http://www.researchgate.net/publication/249612934_The_Hydrometeor_Classification_Algorithm_for_the_Polarimetric_WSR-88D_Description_and_Application_to_an_MCS/preview/0388a2ad0cf2e6c6b614620c/Preview-249612934_The_Hydrometeor_Classification_Algorithm_for_the_Polarimetric_WSR-88D_Description_and_Application_to_an_MCS.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [43] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [44] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [45] Zawadzki I, Fabry F, Szyrmer W. Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos Res, 2001, 59/60: 343-359. doi:  10.1016/S0169-8095(01)00124-7
    [46] Rosenfeld D, Ulbrich C W. Cloud microphysical properties, processes, a nd rainfall estimation opportunities. Meteor Monogr, 2003, 30(52): 237-258. doi:  10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2
    [47] Chen B J, Yang J, Gao R Q, et al. Vertical variability of the raindrop size distribution in typhoons observed at the Shenzhen 356-m meteorological tower. J Atmos Sci, 2020, 77: 4171-4187. http://www.researchgate.net/publication/346195719_Vertical_Variability_of_the_Raindrop_Size_Distribution_in_Typhoons_Observed_at_the_Shenzhen_356-m_Meteorological_Tower
    [48] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212

    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [49] Youter S E, Houze Jr R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123: 1941-1963.
    [50] Steiner M, Houze Jr R A, Youter S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteor Climatol, 1995, 34: 1978-2007.
    [51] DeMott C A, Rutledge S A. The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J Atmos Sci, 1998, 55: 2730-2747.
    [52] Kumjian M R, Prat O P. The impact of raindrop collisional processes on the polarimetric radar variables. J Atmos Sci, 2014, 71(8): 3052-3067.
    [53] Carey L D, Rutledge S A. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon Wea Rev, 2000, 128: 2687-2710.
  • 加载中
图(7)
计量
  • 摘要浏览量:  1433
  • HTML全文浏览量:  377
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2021-11-17
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回