Comparison of Cloud Characteristics Between Typhoon Lekima(1909) and Typhoon Yagi(1814)
-
摘要: 利用FY-2H, Aqua, CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)和GPM(Global Preciptation Measurement)卫星产品, 对比同在浙江温岭沿海登陆且路径相似的台风利奇马(1909)和台风摩羯(1814), 分析其发展过程中云系水平、垂直结构特征以及登陆前台风三维结构特征。结果表明: 台风眼区是否可见、台风云系的螺旋明显程度、最强降水中心的形状变化、螺旋雨带区南北侧云顶高度的差异均是台风发展强弱的重要标志。台风发展成熟阶段云顶高度最大位于台风眼附近。台风登陆前, 台风越强, 单层云占比越高, 多层云占比越少; 台风越强, 光学厚度越大; 台风云系类别主要是深对流云和卷云, 成分以非定向冰为主; 螺旋雨带区云系的云底高度及厚度与台风发展强弱相关; 同一通道下高低亮温区的面积、台风的降水类型、三维降水结构中的对流柱长度和数量、垂直方向上的降水率均可作为台风发展强弱的依据。
-
关键词:
- 台风利奇马(1909);
- 台风摩羯(1814);
- 相似路径台风
Abstract: Previous studies show that two typhoons with similar landing area and similar moving tracks may have significant differences in precipitation intensity, which are caused by different structure and characteristics of the cloud systems. Based on FY-2H, Aqua, CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and GPM(Global Precipitation Measurement) satellite data, the horizontal and vertical structural characteristics of the cloud system, 3-dimensional structure and characteristics of Typhoon Lekima(1909) and Typhoon Yagi(1814), which landed along the Wenling coast of Zhejiang Province, are discussed. The visibility of typhoon eye area and the helicity of typhoon cloud system in TBB images are important indicators of typhoon development. The precipitation near the typhoon center is the largest, and the spatial distribution of typhoon precipitation is asymmetrical. For the typhoons with similar paths, strong typhoon induces circular strong precipitation center, while weak typhoon is along with belt-type strong precipitation center. In the mature stage of typhoon development, the maximum cloud top height is near the typhoon eye. When the cloud top height on the north side of the spiral rain belt area is lower than that on the south side, the typhoon develops strongly. When the cloud top height on the south side of the spiral rain belt area is lower than that the the north side, the typhoon is relatively weak. Before typhoon landing, the proportion of single layer cloud is higher when the typhoon is stronger, and the atmosphere is optically thicker. Typhoon clouds are mainly deep convective clouds and cirrus clouds consisting of non-directional ice. The height of cloud base and thickness in spiral rainband are related to the development of typhoon. Before typhoon landing, the area of high and low brightness temperature under the same channel, the precipitation type of typhoon, the length and number of convective columns in the 3-dimensional precipitation structure, and the precipitation rate in vertical direction can all indicate the development of typhoon. Regardless the typhoon strength, the total amount of ice water particles is roughly the same, and the difference in intensity is reflected in the areas of the high and low brightness temperature under the same channel. The spiral rain belt of a strong typhoon is dominated by stratiform precipitation, while a weak typhoon is dominated by convective precipitation. The number and length of convective columns of a strong typhoon are far greater than those of a weak typhoon.-
Key words:
- Typhoon Lekima(1909);
- Typhoon Yagi(1814);
- similar track typhoon
-
表 1 本文所用卫星产品
Table 1 Satellite products
卫星 产品 产品描述 时间分辨率 空间分辨率 FY-2H 9210格式1 h平均相当黑体亮度温度 亮温 1 h 5 km×5 km Aqua MYD06 云顶高度 5 min 5 km×5 km CALIPSO 05kmCLay 云层数 5 min 5 km×5 km 光学厚度 5 min 5 km×5 km VFM(333 m) 云分类 5 min 地面轨道分辨率为5 km,垂直分辨率为333 m GPM 3IMERGHH 06 降水量 0.5 h 0.1°×0.1° 1CGPMGMI 05 微波辐射亮温 1.5 h 13 km×13 km 2BCMB 06 降水类型 1.5 h 5 km×5 km 降水率 1.5 h 5 km×5 km -
[1] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979: 56-58.Chen L S, Ding Y H. Introduction to Typhoon in the Western Pacific Ocean. Beijing: Science Press, 1979: 56-58. [2] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [3] Elsberry R L. Advances in research and forecasting of tropical cyclones from 1963-2013. Asia-Pac J Atmos Sci, 2014, 50(1): 3-16. doi: 10.1007/s13143-014-0001-1 [4] 赵震. 2016年台风"莫兰蒂"结构特征的多源卫星探测分析. 高原气象, 2019, 38(1): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201901014.htmZhao Z. Multi-satellite observations on the structure characteristics of Typhoon Meranti in 2016. Plateau Meteor, 2019, 38(1): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201901014.htm [5] Jing Y S, Li J, Weng Y, et al. The assessment of drought relief by Typhoon Saomai based on MODIS remote sensing data in Shanghai, China. Nat Hazards, 2014, 71(2): 1215-1225. doi: 10.1007/s11069-013-0667-1 [6] 张晓慧, 张立凤, 周海申, 等. 双台风相互作用及其影响. 应用气象学报, 2019, 30(4): 456-466. doi: 10.11898/1001-7313.20190406Zhang X H, Zhang L F, Zhou H S, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. doi: 10.11898/1001-7313.20190406 [7] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302 [8] 肖柳斯, 张阿思, 闵超, 等. GPM卫星降水产品在台风极端降水过程的误差评估. 高原气象, 2019, 38(5): 993-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905008.htmXiao L S, Zhang A S, Min C, et al. Evaluation of GPM satellite-based precipitation estimates during three tropical-related extreme rainfall events. Plateau Meteor, 2019, 38(5): 993-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905008.htm [9] 刘晓阳, 李郝, 何平, 等. GPM/DPR雷达与CINRAD雷达降水探测对比. 应用气象学报, 2018, 29(6): 667-679. doi: 10.11898/1001-7313.20180603Liu X Y, Li H, He P, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. doi: 10.11898/1001-7313.20180603 [10] 朱梅, 何君涛, 方勉, 等. GPM卫星资料在分析"杜苏芮"台风降水结构中的应用. 干旱气象, 2018, 36(6): 997-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201806014.htmZhu M, He J T, Fang M, et al. Application of GPM data in analysis of precipitation structure of Typhoon Doksuri. Arid Meteor, 2018, 36(6): 997-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201806014.htm [11] 方勉, 何君涛, 符永铭, 等. 基于GPM卫星降水产品对1808号超强台风"玛利亚"降水结构的分析. 大气科学学报, 2019, 42(6): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201906005.htmFang M, He J T, Fu Y M, et al. The precipitation structure for super Typhoon Maria(1808) based on GPM satellite rainfall products. Trans Atmos Sci, 2019, 42(6): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201906005.htm [12] Matrosov S Y. CloudSat measurements of landfalling hurricanes Gustav and Ike(2008). J Geophys Res Atmos, 2011, 116, D01203. DOI: 10.1029/2010JD014506. [13] Tourville N, Stephens G, DeMaria M, et al. Remote sensing of tropical cyclones: Observations from CloudSat and A-Train profilers. Bull Amer Meteor Soc, 2015, 96(4): 609-622. [14] 高洋, 方翔. 基于CloudSat卫星分析西太平洋台风云系的垂直结构及其微物理特征. 气象, 2018, 44(5): 597-611. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201805001.htmGao Y, Fang X. Analyses on vertical structure and microphysical features of typhoon cloud in Western Pacific based on CloudSat satellite data. Meteor Mon, 2018, 44(5): 597-611. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201805001.htm [15] 颜玲, 周玉淑, 王咏青. 相似路径台风Soudelor(1513)与Matmo(1410)登陆前后的降水分布特征及成因的对比分析. 大气科学, 2019, 43(2): 297-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201902007.htmYan L, Zhou Y S, Wang Y Q. Analysis on different characteristics and causes of precipitation distribution during the landing of Typhoon "Soudelor"(1513) and Typhoon "Matmo"(1410) with similar tracks. Chinese J Atmos Sci, 2019, 43(2): 297-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201902007.htm [16] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [17] 刘涛, 端义宏, 冯佳宁, 等. 台风利奇马(1909)双眼墙特征及长时间维持机制. 应用气象学报, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303 [18] 余茁夫, 马烁, 胡雄, 等. 基于多源数据的利奇马台风大气环流、云及降水特征分析. 气象科学, 2020, 40(1): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001005.htmYu Z F, Ma S, Hu X, et al. Analysis of atmospheric circulation, cloud and precipitation characteristics of Typhoon "Lekima" based on multi-source data. J Meteor Sci, 2020, 40(1): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001005.htm [19] 樊志超, 周盛, 汪玲, 等. 湖南秋季积层混合云系飞机人工增雨作业方法. 应用气象学报, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207 [20] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405 [21] 郑倩, 郑有飞, 王立稳, 等. 京津冀夏季强降水下冰云宏微观特征. 干旱区地理, 2019, 42(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201901008.htmZheng Q, Zheng Y F, Wang L W, et al. The macrophysical and microphysical properties of ice clouds during heavy rainfalls in Beijing-Tianjin-Hebei Region in summer. Arid Land Geography, 2019, 42(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201901008.htm [22] 杨冰韵, 张华, 彭杰, 等. 利用CloudSat卫星资料分析云微物理和光学性质的分布特征. 高原气象, 2014, 33(4): 1105-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404024.htmYang B Y, Zhang H, Peng J. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data. Plateau Meteor, 2014, 33(4): 1105-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404024.htm [23] 陈纹锋, 郑有飞, 王立稳, 等. 基于DARDAR数据的中国地区不同光学厚度下冰云特性分析. 高原气象, 2019, 38(6): 1309-1319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201906018.htmChen W F, Zheng Y F, Wang L W, et al. Properties of ice clouds under different optical depth over China based on DARDAR data. Plateau Meteor, 2019, 38(6): 1309-1319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201906018.htm [24] Noel V, Chepfer H. A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation(CALIPSO). J Geophys Res Atmos, 2010, 115, D00H23. [25] 方翔, 曹志强, 王新, 等. AMSU-B微波资料反演对流云中冰粒子含量. 气象学报, 2011, 69(5): 900-911. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105013.htmFang X, Cao Z Q, Wang X, et al. A retrieval of ice contents in convective cloud using the AMSU-B microwave data. Acta Meteor Sinica, 2011, 69(5): 900-911. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105013.htm [26] 蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508 [27] Awaka J, Iguchi T, Okamoto K. Early Results on Rain Type Classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar//Proc 8th URSI Commission F Open Symp, 1998: 134-146.