留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋历史台风风场重建模型参数试验

孔莉莎 张秀芝

孔莉莎, 张秀芝. 西北太平洋历史台风风场重建模型参数试验. 应用气象学报, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105..
引用本文: 孔莉莎, 张秀芝. 西北太平洋历史台风风场重建模型参数试验. 应用气象学报, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105.
Kong Lisha, Zhang Xiuzhi. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105.
Citation: Kong Lisha, Zhang Xiuzhi. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105.

西北太平洋历史台风风场重建模型参数试验

DOI: 10.11898/1001-7313.20220105
资助项目: 

国家自然科学基金项目 51761135012

国家重点研发计划 2020YFA0608203

Sensitive Experiments on Reconstruction Model of Historical Typhoon Wind Field in the Northwest Pacific Ocean

  • 摘要: 基于Yan Meng风场模型, 使用中国近海浮标观测资料, 对影响风场模拟的台风最大风速半径Rmax、压力分布常数B、粗糙度z0 3个参数进行估算试验, 结果表明: 台风中心最大风速Vmax和台风所处纬度的组合方案对估算Rmax更合理; 海面(浮标站)在z0=0.005 m, B=1.0时风速模拟效果较好。选取登陆闽北浙江、北上东海、西进南海、穿台湾岛进入台湾海峡的共19个台风过程进行模拟效果检验发现: 当中央气象台发布的Vmax < 40 m·s-1时, B=1.0, z0=0.005 m模拟的Vmax接近发布的Vmax, 非最强风速区的模拟风速与浮标站观测风速拟合较好, 发布的Vmax≥40 m·s-1时, B=1.4, z0=0.005 m模拟的Vmax接近发布的Vmax, 非最强风速区的模拟风速在B=1.0, z0=0.005 m时更合理。基于该风场模型和参数估算方案, 可重建西北太平洋历史台风风场。
  • 图  1  浮标站分布

    Fig. 1  Distribution of buoy stations

    图  2  2001—2018年西北太平洋台风参数与Rmax关系

    (蓝色上、下边分别代表 75%和25%分位数(设为UD),橙色横线为中位数,红色三角为95%分位数;黑色上、下横线为上、下限,分别为U+1.5(U-D)和D-1.5(U-D), 黑色圆圈表示异常值)

    Fig. 2  Relationship between factors and Rmax in the Northwest Pacific from 2001 to 2018

    (the blue top and bottom lines represent the 75th and 25th percentiles(set as U and D), respectively, the orange horizontal line represents the median, and the red triangle represents the 95th percentile, the black upper and lower horizontal lines are the upper and lower limits of data, calculated by U+1.5(U-D) and D-1.5(U-D)), the black circles represent outliers)

    图  3  2018年7月10—11日台风玛莉亚(1808)影响期间两个浮标站模拟风速与观测风速对比

    Fig. 3  Comparison of simulated and observed wind speed at two buoy stations during the influence period of Typhoon Maria(1808) on 10-11 Jul 2018

    图  4  2017年8月22—23日台风天鸽(1713)影响期间12号浮标站的风速和Vmax

    Fig. 4  The wind speed of buoy station 12 and Vmax during the influence period of Typhoon Hato(1713) on 22-23 Aug 2017

    图  5  Vmax模拟值与发布值对比

    Fig. 5  Comparison of simulated and published values of maximum wind speed

    图  6  2018年7月5-11日台风玛莉亚(1808)不同时刻模拟风场

    (蓝、绿、黄、白、红色三角分别代表 3号、4号、6号、7号和9号浮标站)

    Fig. 6  Simulation diagram of wind field at different times of Typhoon Maria(1808) on 5-11 Jul 2018

    (blue, green, yellow, white and red triangles represent buoy station 3, 4, 6, 7 and 9, respectively)

    表  1  各因子等级

    Table  1  Grade of factors

    等级 Vmax/(m·s-1) 中心气压/hPa 纬度 台风发生月份 海温/℃
    1 (12, 17] (875, 950] (3°N, 20°N] 1,2,3,12 (15, 20]
    2 (17, 25] (950, 970] (20°N, 25°N] 4,5,11 (20, 27]
    3 (25, 30] (970, 1000] (25°N, 30°N] 6—10 (27, 32)
    4 (30, 40] (1000, 1015) (30°N, 50°N)
    5 (40, 90)
    下载: 导出CSV

    表  2  方案1和方案2对应的Rmax (单位:km)

    Table  2  Rmax based on Scheme 1 and Scheme 2 (unit: km)

    中心气压/hPa 台风发生月份 纬度
    1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N)
    (875, 950] 27 29 32 29 32 37 35
    (950, 970] 32 34 38 34 36 44 38
    (970, 1000] 65 61 68 65 70 67 71
    (1000, 1015) 72 80 93 87 86 83 69
    下载: 导出CSV

    表  3  方案3和方案4对应的Rmax (单位:km)

    Table  3  Rmax based on Scheme 3 and Scheme 4 (unit: km)

    Vmax/(m·s-1) 台风发生月份 纬度
    1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N)
    (12, 17] 72 78 82 79 85 80 82
    (17, 25] 66 62 70 65 69 74 78
    (25, 30] 41 43 53 45 53 57 58
    (30, 40] 37 36 41 37 41 43 42
    (40, 90) 27 30 33 29 32 41 36
    下载: 导出CSV

    表  4  浮标站v

    Table  4  v′ of buoy stations

    台风 站号标识 z0/m v′/(m·s-1)
    B=1.0 B=1.2 B=1.4 B=1.6
    天鸽(1713) 12号 0.020 3.03 5.08
    0.010 4.10
    0.005 2.54* 4.97
    0.001 3.88
    天鸽(1713) 13号 0.020 5.45 7.90 10.16
    0.010 4.17* 7.05 9.65
    0.005 5.38 8.41
    0.001 7.46 10.72
    帕卡(1714) 13号 0.020 1.78* 2.95 3.83
    0.010 2.78 4.04
    0.005 3.63 4.97
    0.001 5.08 6.57
    玛莉亚(1808) 5号 0.020 3.2 2.49 2.25
    0.010 1.65 0.82 0.49
    0.005 1.70 0.27* 0.60 0.99
    0.001 0.57 2.19 3.23
    玛莉亚(1808) 8号 0.020 5.01 7.66 10.08
    0.010 6.52 9.32 11.88
    0.005 4.55* 7.78 10.72 13.41
    0.001 6.47 9.95 13.11
    玛莉亚(1808) 10号 0.020 2.72 2.49 2.75
    0.010 1.53 1.25 1.45
    0.005 1.41 0.48 0.15* 0.34
    0.001 0.31 1.39 1.84
    米娜(1918) 4号 0.020 6.10 4.87 4.07 3.71
    0.010 5.07 3.74 2.89 2.46
    0.005 4.19 2.76 1.85
    0.001 2.68 1.08*
    巴威(2008) 1号 0.020 1.14 1.22 1.76
    0.010 0.07* 0.12 0.65
    0.005 0.32 0.86 0.84
    0.001 1.85 2.52 2.58
    巴威(2008) 2号 0.020 1.90 0.12* 1.31
    0.010 0.47 1.41 2.95
    0.005 1.63 0.76 2.73 4.38
    0.001 0.24 2.85 5.06
    美莎克(2009) 2号 0.020 5.95 6.31
    0.010 4.75 4.56 4.90
    0.005 3.59 3.38 3.69
    0.001 2.46 1.49 1.17*
    注:*表示浮标站v′同时满足规则1和规则2。
    下载: 导出CSV

    表  5  9种Bz0取值组合次数及v′平均值

    Table  5  The frequency of nine combinations of values of B and z0 and the average value of v

    Bz0取值组合 次数 v′平均值/(m·s-1)
    B=1.0,z0=0.005 m 2 2.81
    B=1.4,z0=0.001 m 1 4.50
    B=1.4,z0=0.005 m 1 2.90
    B=1.4,z0=0.020 m 1 4.08
    B=1.0,z0=0.010 m 1 4.01
    B=1.0,z0=0.020 m 1 3.94
    B=1.2,z0=0.005 m 1 3.49
    B=1.2,z0=0.001 m 1 4.31
    B=1.2,z0=0.010 m 1 3.39
    下载: 导出CSV

    表  6  2018年7月10日23:00—11日09:00台风玛莉亚(1808)影响期间参数取值试验之外的浮标站风速观测值及模拟值

    Table  6  Observed and simulated wind speed of buoy stations test during the influence period of Typhoon Maria(1808) from 2300 BT 10 Jul 2018 to 0900 BT 11 Jul 2018

    时间 浮标站站号标识 观测风速/(m·s-1) 模拟风速/(m·s-1)
    2018-07-10T23:00 3号 20.7 18.3
    4号 16.2 14.7
    6号 19.5 17.0
    7号 29.0 26.9
    9号 15.7 14.6
    2018-07-11T00:00 3号 22.3 20.3
    4号 17.4 16.3
    6号 19.9 19.1
    7号 32.4 32.0
    9号 12.5 15.9
    2018-07-11T01:00 3号 22.9 21.9
    4号 17.9 18.3
    6号 23.6 22.3
    7号 27.6 38.5
    9号 17.4 18.0
    2018-07-11T02:00 3号 20.6 24.4
    4号 19.1 21.3
    6号 30.6 27.0
    7号 26.3 37.0
    9号 19.2 20.1
    2018-07-11T03:00 3号 25.4 25.5
    4号 20.9 24.7
    6号 32.7 33.7
    7号 36.7 33.7
    9号 24.1 22.2
    2018-07-11T04:00 3号 24.2 23.1
    4号 27.8 26.2
    6号 27.5 39.8
    7号 34.9 27.0
    9号 27.1 26.7
    2018-07-11T05:00 3号 21.8 20.6
    4号 26.7 25.5
    6号 30.0 38.5
    7号 26.6 22.9
    9号 28.8 30.3
    2018-07-11T06:00 3号 19.2 19.5
    4号 23.1 24.9
    6号 35.7 35.3
    7号 20.6 21.3
    9号 30.1 31.2
    2018-07-11T07:00 3号 18.9 18.5
    4号 21.8 24.0
    6号 29.5 32.1
    7号 18.8 19.8
    9号 30.7 31.3
    2018-07-11T08:00 3号 16.1 17.4
    4号 15.5 23.3
    6号 22.9 28.0
    7号 18.2 17.8
    9号 25.5 28.3
    2018-07-11T09:00 3号 16.4 13.9
    4号 15.4 18.9
    6号 19.3 21.3
    7号 14.0
    9号 21.9 22.7
    下载: 导出CSV
  • [1] 蔡则怡, 徐良炎, 徐元太. 我国热带气旋灾害的分析研究. 大气科学, 1994, 18(增刊Ⅰ): 826-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.006.htm

    Cai Z Y, Xu L Y, Xu Y T. A study on the tropical cyclone disasters in China. Chinese J Atmos Sci, 1994, 18(Suppl I): 826-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.006.htm
    [2] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi:  10.11898/1001-7313.20210302

    Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi:  10.11898/1001-7313.20210302
    [3] 刘东海, 宋丽莉, 李国平, 等. 强台风"黑格比"实测海上风电机组极端风况特征参数分析和讨论. 热带气象学报, 2011, 27(3): 317-326. doi:  10.3969/j.issn.1004-4965.2011.03.004

    Liu D H, Song L L, Li G P, et al. Analysis of the extreme loads on offshore wind turbines by strong Typhoon Hagupit. J Trop Meteor, 2011, 27(3): 317-326. doi:  10.3969/j.issn.1004-4965.2011.03.004
    [4] 严嘉明, 赵兵科, 张帅, 等. 边界层风廓线雷达对登陆台风观测适用性评估. 应用气象学报, 2021, 20(3): 332-346. doi:  10.11898/1001-7313.20210306

    Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi:  10.11898/1001-7313.20210306
    [5] 施丽娟, 许小峰, 李柏, 等. 雷达资料在登陆台风"桑美"数值模拟中的应用. 应用气象学报, 2009, 20(3): 257-266. doi:  10.3969/j.issn.1001-7313.2009.03.001

    Shi L J, Xu X F, Li B, et al. Application of Doppler radar data to the landfalling Typhoon Saomai simulation. J Appl Meteor Sci, 2009, 20(3): 257-266. doi:  10.3969/j.issn.1001-7313.2009.03.001
    [6] 潘裕山. 东亚区域再分析资料在西北太平洋热带气旋模拟中的应用研究. 湛江: 广东海洋大学, 2020.

    Pan Y S. Application Research of East Asian Regional Reanalysis to Tropical Cyclone Simulation in the North Pacific. Zhanjiang: Guangdong Ocean University, 2020.
    [7] 张容焱, 徐宗焕, 游立军, 等. 福建热带气旋风雨空间分布特征及风险评估. 应用气象学报, 2012, 23(6): 672-682. doi:  10.3969/j.issn.1001-7313.2012.06.004

    Zhang R Y, Xu Z H, You L J, et al. Wind and rainfall features and risk assessment of tropical cyclone in Fujian. J Appl Meteor Sci, 2012, 23(6): 672-682. doi:  10.3969/j.issn.1001-7313.2012.06.004
    [8] 陈燕, 张宁. 江苏沿海近地层风阵性及台风对其影响. 应用气象学报, 2019, 30(2): 177-190. doi:  10.11898/1001-7313.20190205

    Chen Y, Zhang N. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 32(2): 177-190. doi:  10.11898/1001-7313.20190205
    [9] 陈联寿. 热带气旋研究和业务预报技术的发展. 应用气象学报, 2006, 17(6): 672-681. doi:  10.3969/j.issn.1001-7313.2006.06.005

    Chen L S. The evolution on research and operational foresting techniques of tropical cyclones. J Appl Meteor Sci, 2006, 17(6): 672-681. doi:  10.3969/j.issn.1001-7313.2006.06.005
    [10] Shapiro L J. The asymmetric boundary layer flow under a translating hurricane. J Atmos, 1983, 40(8): 1984-1998. doi:  10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2
    [11] Cardone V J, Greenwood C V, Greenwood J A, et al. Unified Program for the Specification of Hurricane Boundary Layer Winds over Surfaces of Specified Roughness. Washington DC: US Army Corps of Engineers, 1992: 12-35.
    [12] Meng Y, Matsui M, Hibi K. An analytical model for simulation of the wind field in a typhoon boundary layer. J Wind Eng Ind Aerod, 1995, 56(2/3): 291-310.
    [13] 郭云霞, 侯一筠, 齐鹏. Monte-Carlo模拟与经验路径模型预测台风极值风速的对比. 海洋学报, 2020, 42(7): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202007006.htm

    Guo Y X, Hou Y J, Qi P. Comparison of extreme wind speeds predicted by Monte-Carlo simulation and empirical track model. Acta Oceanol Sinica, 2020, 42(7): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202007006.htm
    [14] 赵林, 葛耀君, 项海帆. 台风风场随机参数敏感性分析. 同济大学学报(自然科学版), 2005, 33(6): 727-731. doi:  10.3321/j.issn:0253-374X.2005.06.004

    Zhao L, Ge Y J, Xiang H F. Stochastic parameter sensitivity analysis of typhoon wind field. J Tongji Univ(Nat Sci Ed), 2005, 33(6): 727-731. doi:  10.3321/j.issn:0253-374X.2005.06.004
    [15] 谢汝强, 吴韬, 王艳华. 台风风场模型适应性研究. 合肥学院学报(自然科学版), 2014, 24(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ201402020.htm

    Xie R Q, Wu T, Wang Y H. Adaptability research on typhoon wind-field model. J Hefei Univ(Nat Sci Ed), 2014, 24(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ201402020.htm
    [16] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979.

    Chen L S, Ding Y H. Introduction to Typhoons in the Western Pacific. Beijing: Science Press, 1979.
    [17] 雷小途, 陈联寿. 热带气旋风场模型构造及特征参数估算. 地球物理学报, 2005, 48(1): 25-31. doi:  10.3321/j.issn:0001-5733.2005.01.005

    Lei X T, Chen L S. A method to construct tropical cyclone wind distribution models and estimate its characteristic parameters. Chinese J Geophys, 2005, 48(1): 25-31. doi:  10.3321/j.issn:0001-5733.2005.01.005
    [18] Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H * Wind Data. J Appl Meteorol Climatol, 2008, 47(10): 2497-2517. doi:  10.1175/2008JAMC1837.1
    [19] Fang G S, Zhao L, Cao S Y, et al. A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency. J Wind Eng Ind Aerod, 2018, 175: 77-89. doi:  10.1016/j.jweia.2018.01.019
    [20] 江志辉, 华锋, 曲平. 一个新的热带气旋参数调整方案. 海洋科学进展, 2008, 26(1): 1-7. doi:  10.3969/j.issn.1671-6647.2008.01.001

    Jiang Z H, Hua F, Qu P. A new scheme for adjusting the tropical cyclone parameters. Adv Mar Sci, 2008, 26(1): 1-7. doi:  10.3969/j.issn.1671-6647.2008.01.001
    [21] 李瑞龙. 基于改进的台风关键参数的台风极值风速预测. 哈尔滨: 哈尔滨工业大学, 2007.

    Li R L. Prediction of Typhoon Extreme Wind Speeds Based on Improved Typhoon Key Parameters. Harbin: Harbin Institute of Technology, 2007.
    [22] 胡邦辉, 谭言科, 王举. 热带气旋海面最大风速半径的计算. 应用气象学报, 2004, 15(4): 427-435. doi:  10.3969/j.issn.1001-7313.2004.04.005

    Hu B H, Tan Y K, Wang J. Calculation of maximum wind velocity radius of tropical cyclone on sea surface. J Appl Meteor Sci, 2004, 15(4): 427-435. doi:  10.3969/j.issn.1001-7313.2004.04.005
    [23] 陈德文, 董剑, 袁方超. 基于QuickSCAT卫星遥感风场的台风最大风速半径反演及个例分析. 海洋通报, 2012, 31(4): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201204004.htm

    Chen D W, Dong J, Yuan F C. Retrieving the radius of maximum wind of typhoon from QuikSCAT wind fields and case analysis. Mar Sci Bull, 2012, 31(4): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201204004.htm
    [24] Powell M, Soukup G, Cocke S, et al. State of Florida hurricane loss projection model: Atmospheric science component. J Wind Eng Ind Aerod, 2005, 93(8): 651-674. doi:  10.1016/j.jweia.2005.05.008
    [25] Jakobsen F, Madsen H. Comparison and further development of parametric tropical cyclone models for storm surge modelling. J Wind Eng Ind Aerod, 2004, 92(5): 375-391. doi:  10.1016/j.jweia.2004.01.003
    [26] Hubbert G D, Holland G J, Leslie L M, et al. A real-time system for forecasting tropical cyclone storm surges. Wea Forecasting, 1991, 6(1): 86-97. doi:  10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
    [27] Xiao Y F, Duan Z D, Xiao Y Q, et al. Typhoon wind hazard analysis for southeast China coastal regions. Struct Saf, 2011, 33(4/5): 286-295.
    [28] Guo Y X, Hou Y J, Qi P. Analysis of typhoon wind hazard in Shenzhen City by Monte-Carlo simulation. J Oceanol Limnol, 2019, 37(6): 1994-2013. doi:  10.1007/s00343-019-8231-9
    [29] Zeng Z H, Wang Y Q, Duan Y H, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv Atmos Sci, 2010, 27(2): 337-355.
    [30] 闫俊岳, 黄爱芬. 黄海西部海洋工程风、浪设计参数的分析和计算. 应用气象学报, 1990, 1(3): 317-323. http://qikan.camscma.cn/article/id/19900347

    Yan J Y, Huang A F. Analysis and calculation of extreme wind speed and wave height for the design of marine engineering. J Appl Meteor Sci, 1990, 1(3): 317-323. http://qikan.camscma.cn/article/id/19900347
    [31] 张容焱, 张秀芝, 蔡连娃. 沿海风工程设计风速中泊松-耿贝尔法的应用. 应用气象学报, 2010, 21(2): 237-242. doi:  10.3969/j.issn.1001-7313.2010.02.014

    Zhang R Y, Zhang X Z, Cai L W. Application of poisson-gumbel distribution to wind speed calculation for the southeast coastland of China. J Appl Meteor Sci, 2010, 21(2): 237-242. doi:  10.3969/j.issn.1001-7313.2010.02.014
    [32] 闫俊岳, 陈乾金, 张秀芝, 等. 中国近海气候. 北京: 科学出版社, 1993.

    Yan J Y, Chen Q J, Zhang X Z, et al. Offshore Climate of China. Beijing: Science Press, 1993.
    [33] 赵永平, 张必成, 陈永利, 等. 不同时距平均风速换算关系的研究. 海岸工程, 1988, 7(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198803008.htm

    Zhao Y P, Zhang B C, Chen Y L, et al. The conversion coefficients between the average wind velocity in the different periods. Coast Eng, 1988, 7(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198803008.htm
  • 加载中
图(6) / 表(6)
计量
  • 摘要浏览量:  1168
  • HTML全文浏览量:  260
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-09-18
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回