Sensitive Experiments on Reconstruction Model of Historical Typhoon Wind Field in the Northwest Pacific Ocean
-
摘要: 基于Yan Meng风场模型, 使用中国近海浮标观测资料, 对影响风场模拟的台风最大风速半径Rmax、压力分布常数B、粗糙度z0 3个参数进行估算试验, 结果表明: 台风中心最大风速Vmax和台风所处纬度的组合方案对估算Rmax更合理; 海面(浮标站)在z0=0.005 m, B=1.0时风速模拟效果较好。选取登陆闽北浙江、北上东海、西进南海、穿台湾岛进入台湾海峡的共19个台风过程进行模拟效果检验发现: 当中央气象台发布的Vmax < 40 m·s-1时, B=1.0, z0=0.005 m模拟的Vmax接近发布的Vmax, 非最强风速区的模拟风速与浮标站观测风速拟合较好, 发布的Vmax≥40 m·s-1时, B=1.4, z0=0.005 m模拟的Vmax接近发布的Vmax, 非最强风速区的模拟风速在B=1.0, z0=0.005 m时更合理。基于该风场模型和参数估算方案, 可重建西北太平洋历史台风风场。Abstract: In order to reconstruct the historical typhoon wind field in the Northwest Pacific Ocean and calculate the maximum wind speed in 50 years of the Northwest Pacific Ocean, Yan Meng wind field model is used to simulate the wind field. There are 3 important parameters for wind field simulation in Yan Meng wind field model: The radius of maximum wind, pressure distribution constant B, and roughness z0. Therefore, it is necessary to test and reasonably optimize the value of the three parameters by measured data of the buoy stations during the typhoon in the Northwest Pacific Ocean.First, based on the JTWC (Joint Typhoon Warning Center) dataset, the relationship between the radius of maximum wind and its impact factors is discussed and four combinations scheme of calculating the radius of maximum wind are proposed, and then the best combination scheme is selected through the measured data. Second, the values of B and z0 are estimated with the observed wind speed of buoy stations during different typhoons. Finally, the simulation effect of the typhoon wind field at sea is evaluated with 19 typhoon processes, and the applicability of the model and estimation scheme of three parameters are verified.The results show that it is more reasonable to find the radius of maximum wind by combination scheme of Vmax (the maximum wind speed of typhoon center) and the latitude of typhoon. In the parameter value test, the wind speed simulation effect of sea surface (buoy stations) is better given z0 being 0.005 m and B being 1.0, according to the absolute deviation between the simulated and the measured maximum wind speed at 10 buoy stations during 6 typhoons. Except for the parameter test, 19 other typhoon processes landing in northern Fujian and Zhejiang, heading north to the East China Sea, moving west to the South China Sea, and crossing Taiwan Island into the Taiwan Strait are selected to test the simulation effect, which illustrates that when the Vmax published by Central Meteorological Observatory is below 40 m·s-1, the simulated Vmax is close to the published Vmax if B is equal to 1.0 and z0 is equal to 0.005 m, and the simulated wind speed in the non-maximum wind speed region is well fitted with the observed wind speed of the buoy stations. In addition, When Vmax published is greater than or equal to 40 m·s-1, the simulated Vmax is close to the published Vmax if B is equal to 1.4 and z0 is equal to 0.005 m, and the simulated wind speed of non-maximum wind speed region is more reasonable when B is equal to 1.0 and z0 is equal to 0.005 m.
-
Key words:
- typhoon;
- wind field model;
- sensitive experiments;
- simulation verification
-
图 2 2001—2018年西北太平洋台风参数与Rmax关系
(蓝色上、下边分别代表 75%和25%分位数(设为U和D),橙色横线为中位数,红色三角为95%分位数;黑色上、下横线为上、下限,分别为U+1.5(U-D)和D-1.5(U-D), 黑色圆圈表示异常值)
Fig. 2 Relationship between factors and Rmax in the Northwest Pacific from 2001 to 2018
(the blue top and bottom lines represent the 75th and 25th percentiles(set as U and D), respectively, the orange horizontal line represents the median, and the red triangle represents the 95th percentile, the black upper and lower horizontal lines are the upper and lower limits of data, calculated by U+1.5(U-D) and D-1.5(U-D)), the black circles represent outliers)
表 1 各因子等级
Table 1 Grade of factors
等级 Vmax/(m·s-1) 中心气压/hPa 纬度 台风发生月份 海温/℃ 1 (12, 17] (875, 950] (3°N, 20°N] 1,2,3,12 (15, 20] 2 (17, 25] (950, 970] (20°N, 25°N] 4,5,11 (20, 27] 3 (25, 30] (970, 1000] (25°N, 30°N] 6—10 (27, 32) 4 (30, 40] (1000, 1015) (30°N, 50°N) 5 (40, 90) 表 2 方案1和方案2对应的Rmax (单位:km)
Table 2 Rmax based on Scheme 1 and Scheme 2 (unit: km)
中心气压/hPa 台风发生月份 纬度 1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N) (875, 950] 27 29 32 29 32 37 35 (950, 970] 32 34 38 34 36 44 38 (970, 1000] 65 61 68 65 70 67 71 (1000, 1015) 72 80 93 87 86 83 69 表 3 方案3和方案4对应的Rmax (单位:km)
Table 3 Rmax based on Scheme 3 and Scheme 4 (unit: km)
Vmax/(m·s-1) 台风发生月份 纬度 1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N) (12, 17] 72 78 82 79 85 80 82 (17, 25] 66 62 70 65 69 74 78 (25, 30] 41 43 53 45 53 57 58 (30, 40] 37 36 41 37 41 43 42 (40, 90) 27 30 33 29 32 41 36 表 4 浮标站v′
Table 4 v′ of buoy stations
台风 站号标识 z0/m v′/(m·s-1) B=1.0 B=1.2 B=1.4 B=1.6 天鸽(1713) 12号 0.020 3.03 5.08 0.010 4.10 0.005 2.54* 4.97 0.001 3.88 天鸽(1713) 13号 0.020 5.45 7.90 10.16 0.010 4.17* 7.05 9.65 0.005 5.38 8.41 0.001 7.46 10.72 帕卡(1714) 13号 0.020 1.78* 2.95 3.83 0.010 2.78 4.04 0.005 3.63 4.97 0.001 5.08 6.57 玛莉亚(1808) 5号 0.020 3.2 2.49 2.25 0.010 1.65 0.82 0.49 0.005 1.70 0.27* 0.60 0.99 0.001 0.57 2.19 3.23 玛莉亚(1808) 8号 0.020 5.01 7.66 10.08 0.010 6.52 9.32 11.88 0.005 4.55* 7.78 10.72 13.41 0.001 6.47 9.95 13.11 玛莉亚(1808) 10号 0.020 2.72 2.49 2.75 0.010 1.53 1.25 1.45 0.005 1.41 0.48 0.15* 0.34 0.001 0.31 1.39 1.84 米娜(1918) 4号 0.020 6.10 4.87 4.07 3.71 0.010 5.07 3.74 2.89 2.46 0.005 4.19 2.76 1.85 0.001 2.68 1.08* 巴威(2008) 1号 0.020 1.14 1.22 1.76 0.010 0.07* 0.12 0.65 0.005 0.32 0.86 0.84 0.001 1.85 2.52 2.58 巴威(2008) 2号 0.020 1.90 0.12* 1.31 0.010 0.47 1.41 2.95 0.005 1.63 0.76 2.73 4.38 0.001 0.24 2.85 5.06 美莎克(2009) 2号 0.020 5.95 6.31 0.010 4.75 4.56 4.90 0.005 3.59 3.38 3.69 0.001 2.46 1.49 1.17* 注:*表示浮标站v′同时满足规则1和规则2。 表 5 9种B和z0取值组合次数及v′平均值
Table 5 The frequency of nine combinations of values of B and z0 and the average value of v′
B和z0取值组合 次数 v′平均值/(m·s-1) B=1.0,z0=0.005 m 2 2.81 B=1.4,z0=0.001 m 1 4.50 B=1.4,z0=0.005 m 1 2.90 B=1.4,z0=0.020 m 1 4.08 B=1.0,z0=0.010 m 1 4.01 B=1.0,z0=0.020 m 1 3.94 B=1.2,z0=0.005 m 1 3.49 B=1.2,z0=0.001 m 1 4.31 B=1.2,z0=0.010 m 1 3.39 表 6 2018年7月10日23:00—11日09:00台风玛莉亚(1808)影响期间参数取值试验之外的浮标站风速观测值及模拟值
Table 6 Observed and simulated wind speed of buoy stations test during the influence period of Typhoon Maria(1808) from 2300 BT 10 Jul 2018 to 0900 BT 11 Jul 2018
时间 浮标站站号标识 观测风速/(m·s-1) 模拟风速/(m·s-1) 2018-07-10T23:00 3号 20.7 18.3 4号 16.2 14.7 6号 19.5 17.0 7号 29.0 26.9 9号 15.7 14.6 2018-07-11T00:00 3号 22.3 20.3 4号 17.4 16.3 6号 19.9 19.1 7号 32.4 32.0 9号 12.5 15.9 2018-07-11T01:00 3号 22.9 21.9 4号 17.9 18.3 6号 23.6 22.3 7号 27.6 38.5 9号 17.4 18.0 2018-07-11T02:00 3号 20.6 24.4 4号 19.1 21.3 6号 30.6 27.0 7号 26.3 37.0 9号 19.2 20.1 2018-07-11T03:00 3号 25.4 25.5 4号 20.9 24.7 6号 32.7 33.7 7号 36.7 33.7 9号 24.1 22.2 2018-07-11T04:00 3号 24.2 23.1 4号 27.8 26.2 6号 27.5 39.8 7号 34.9 27.0 9号 27.1 26.7 2018-07-11T05:00 3号 21.8 20.6 4号 26.7 25.5 6号 30.0 38.5 7号 26.6 22.9 9号 28.8 30.3 2018-07-11T06:00 3号 19.2 19.5 4号 23.1 24.9 6号 35.7 35.3 7号 20.6 21.3 9号 30.1 31.2 2018-07-11T07:00 3号 18.9 18.5 4号 21.8 24.0 6号 29.5 32.1 7号 18.8 19.8 9号 30.7 31.3 2018-07-11T08:00 3号 16.1 17.4 4号 15.5 23.3 6号 22.9 28.0 7号 18.2 17.8 9号 25.5 28.3 2018-07-11T09:00 3号 16.4 13.9 4号 15.4 18.9 6号 19.3 21.3 7号 14.0 9号 21.9 22.7 -
[1] 蔡则怡, 徐良炎, 徐元太. 我国热带气旋灾害的分析研究. 大气科学, 1994, 18(增刊Ⅰ): 826-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.006.htmCai Z Y, Xu L Y, Xu Y T. A study on the tropical cyclone disasters in China. Chinese J Atmos Sci, 1994, 18(Suppl I): 826-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.006.htm [2] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302 [3] 刘东海, 宋丽莉, 李国平, 等. 强台风"黑格比"实测海上风电机组极端风况特征参数分析和讨论. 热带气象学报, 2011, 27(3): 317-326. doi: 10.3969/j.issn.1004-4965.2011.03.004Liu D H, Song L L, Li G P, et al. Analysis of the extreme loads on offshore wind turbines by strong Typhoon Hagupit. J Trop Meteor, 2011, 27(3): 317-326. doi: 10.3969/j.issn.1004-4965.2011.03.004 [4] 严嘉明, 赵兵科, 张帅, 等. 边界层风廓线雷达对登陆台风观测适用性评估. 应用气象学报, 2021, 20(3): 332-346. doi: 10.11898/1001-7313.20210306Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306 [5] 施丽娟, 许小峰, 李柏, 等. 雷达资料在登陆台风"桑美"数值模拟中的应用. 应用气象学报, 2009, 20(3): 257-266. doi: 10.3969/j.issn.1001-7313.2009.03.001Shi L J, Xu X F, Li B, et al. Application of Doppler radar data to the landfalling Typhoon Saomai simulation. J Appl Meteor Sci, 2009, 20(3): 257-266. doi: 10.3969/j.issn.1001-7313.2009.03.001 [6] 潘裕山. 东亚区域再分析资料在西北太平洋热带气旋模拟中的应用研究. 湛江: 广东海洋大学, 2020.Pan Y S. Application Research of East Asian Regional Reanalysis to Tropical Cyclone Simulation in the North Pacific. Zhanjiang: Guangdong Ocean University, 2020. [7] 张容焱, 徐宗焕, 游立军, 等. 福建热带气旋风雨空间分布特征及风险评估. 应用气象学报, 2012, 23(6): 672-682. doi: 10.3969/j.issn.1001-7313.2012.06.004Zhang R Y, Xu Z H, You L J, et al. Wind and rainfall features and risk assessment of tropical cyclone in Fujian. J Appl Meteor Sci, 2012, 23(6): 672-682. doi: 10.3969/j.issn.1001-7313.2012.06.004 [8] 陈燕, 张宁. 江苏沿海近地层风阵性及台风对其影响. 应用气象学报, 2019, 30(2): 177-190. doi: 10.11898/1001-7313.20190205Chen Y, Zhang N. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 32(2): 177-190. doi: 10.11898/1001-7313.20190205 [9] 陈联寿. 热带气旋研究和业务预报技术的发展. 应用气象学报, 2006, 17(6): 672-681. doi: 10.3969/j.issn.1001-7313.2006.06.005Chen L S. The evolution on research and operational foresting techniques of tropical cyclones. J Appl Meteor Sci, 2006, 17(6): 672-681. doi: 10.3969/j.issn.1001-7313.2006.06.005 [10] Shapiro L J. The asymmetric boundary layer flow under a translating hurricane. J Atmos, 1983, 40(8): 1984-1998. doi: 10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2 [11] Cardone V J, Greenwood C V, Greenwood J A, et al. Unified Program for the Specification of Hurricane Boundary Layer Winds over Surfaces of Specified Roughness. Washington DC: US Army Corps of Engineers, 1992: 12-35. [12] Meng Y, Matsui M, Hibi K. An analytical model for simulation of the wind field in a typhoon boundary layer. J Wind Eng Ind Aerod, 1995, 56(2/3): 291-310. [13] 郭云霞, 侯一筠, 齐鹏. Monte-Carlo模拟与经验路径模型预测台风极值风速的对比. 海洋学报, 2020, 42(7): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202007006.htmGuo Y X, Hou Y J, Qi P. Comparison of extreme wind speeds predicted by Monte-Carlo simulation and empirical track model. Acta Oceanol Sinica, 2020, 42(7): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202007006.htm [14] 赵林, 葛耀君, 项海帆. 台风风场随机参数敏感性分析. 同济大学学报(自然科学版), 2005, 33(6): 727-731. doi: 10.3321/j.issn:0253-374X.2005.06.004Zhao L, Ge Y J, Xiang H F. Stochastic parameter sensitivity analysis of typhoon wind field. J Tongji Univ(Nat Sci Ed), 2005, 33(6): 727-731. doi: 10.3321/j.issn:0253-374X.2005.06.004 [15] 谢汝强, 吴韬, 王艳华. 台风风场模型适应性研究. 合肥学院学报(自然科学版), 2014, 24(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ201402020.htmXie R Q, Wu T, Wang Y H. Adaptability research on typhoon wind-field model. J Hefei Univ(Nat Sci Ed), 2014, 24(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ201402020.htm [16] 陈联寿, 丁一汇. 西太平洋台风概论. 北京: 科学出版社, 1979.Chen L S, Ding Y H. Introduction to Typhoons in the Western Pacific. Beijing: Science Press, 1979. [17] 雷小途, 陈联寿. 热带气旋风场模型构造及特征参数估算. 地球物理学报, 2005, 48(1): 25-31. doi: 10.3321/j.issn:0001-5733.2005.01.005Lei X T, Chen L S. A method to construct tropical cyclone wind distribution models and estimate its characteristic parameters. Chinese J Geophys, 2005, 48(1): 25-31. doi: 10.3321/j.issn:0001-5733.2005.01.005 [18] Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H * Wind Data. J Appl Meteorol Climatol, 2008, 47(10): 2497-2517. doi: 10.1175/2008JAMC1837.1 [19] Fang G S, Zhao L, Cao S Y, et al. A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency. J Wind Eng Ind Aerod, 2018, 175: 77-89. doi: 10.1016/j.jweia.2018.01.019 [20] 江志辉, 华锋, 曲平. 一个新的热带气旋参数调整方案. 海洋科学进展, 2008, 26(1): 1-7. doi: 10.3969/j.issn.1671-6647.2008.01.001Jiang Z H, Hua F, Qu P. A new scheme for adjusting the tropical cyclone parameters. Adv Mar Sci, 2008, 26(1): 1-7. doi: 10.3969/j.issn.1671-6647.2008.01.001 [21] 李瑞龙. 基于改进的台风关键参数的台风极值风速预测. 哈尔滨: 哈尔滨工业大学, 2007.Li R L. Prediction of Typhoon Extreme Wind Speeds Based on Improved Typhoon Key Parameters. Harbin: Harbin Institute of Technology, 2007. [22] 胡邦辉, 谭言科, 王举. 热带气旋海面最大风速半径的计算. 应用气象学报, 2004, 15(4): 427-435. doi: 10.3969/j.issn.1001-7313.2004.04.005Hu B H, Tan Y K, Wang J. Calculation of maximum wind velocity radius of tropical cyclone on sea surface. J Appl Meteor Sci, 2004, 15(4): 427-435. doi: 10.3969/j.issn.1001-7313.2004.04.005 [23] 陈德文, 董剑, 袁方超. 基于QuickSCAT卫星遥感风场的台风最大风速半径反演及个例分析. 海洋通报, 2012, 31(4): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201204004.htmChen D W, Dong J, Yuan F C. Retrieving the radius of maximum wind of typhoon from QuikSCAT wind fields and case analysis. Mar Sci Bull, 2012, 31(4): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201204004.htm [24] Powell M, Soukup G, Cocke S, et al. State of Florida hurricane loss projection model: Atmospheric science component. J Wind Eng Ind Aerod, 2005, 93(8): 651-674. doi: 10.1016/j.jweia.2005.05.008 [25] Jakobsen F, Madsen H. Comparison and further development of parametric tropical cyclone models for storm surge modelling. J Wind Eng Ind Aerod, 2004, 92(5): 375-391. doi: 10.1016/j.jweia.2004.01.003 [26] Hubbert G D, Holland G J, Leslie L M, et al. A real-time system for forecasting tropical cyclone storm surges. Wea Forecasting, 1991, 6(1): 86-97. doi: 10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2 [27] Xiao Y F, Duan Z D, Xiao Y Q, et al. Typhoon wind hazard analysis for southeast China coastal regions. Struct Saf, 2011, 33(4/5): 286-295. [28] Guo Y X, Hou Y J, Qi P. Analysis of typhoon wind hazard in Shenzhen City by Monte-Carlo simulation. J Oceanol Limnol, 2019, 37(6): 1994-2013. doi: 10.1007/s00343-019-8231-9 [29] Zeng Z H, Wang Y Q, Duan Y H, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv Atmos Sci, 2010, 27(2): 337-355. [30] 闫俊岳, 黄爱芬. 黄海西部海洋工程风、浪设计参数的分析和计算. 应用气象学报, 1990, 1(3): 317-323. http://qikan.camscma.cn/article/id/19900347Yan J Y, Huang A F. Analysis and calculation of extreme wind speed and wave height for the design of marine engineering. J Appl Meteor Sci, 1990, 1(3): 317-323. http://qikan.camscma.cn/article/id/19900347 [31] 张容焱, 张秀芝, 蔡连娃. 沿海风工程设计风速中泊松-耿贝尔法的应用. 应用气象学报, 2010, 21(2): 237-242. doi: 10.3969/j.issn.1001-7313.2010.02.014Zhang R Y, Zhang X Z, Cai L W. Application of poisson-gumbel distribution to wind speed calculation for the southeast coastland of China. J Appl Meteor Sci, 2010, 21(2): 237-242. doi: 10.3969/j.issn.1001-7313.2010.02.014 [32] 闫俊岳, 陈乾金, 张秀芝, 等. 中国近海气候. 北京: 科学出版社, 1993.Yan J Y, Chen Q J, Zhang X Z, et al. Offshore Climate of China. Beijing: Science Press, 1993. [33] 赵永平, 张必成, 陈永利, 等. 不同时距平均风速换算关系的研究. 海岸工程, 1988, 7(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198803008.htmZhao Y P, Zhang B C, Chen Y L, et al. The conversion coefficients between the average wind velocity in the different periods. Coast Eng, 1988, 7(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198803008.htm