留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋热带气旋闪电时空尺度和光辐射能

周鑫 张文娟 张义军 郑栋

周鑫, 张文娟, 张义军, 等. 西北太平洋热带气旋闪电时空尺度和光辐射能. 应用气象学报, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106..
引用本文: 周鑫, 张文娟, 张义军, 等. 西北太平洋热带气旋闪电时空尺度和光辐射能. 应用气象学报, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106.
Zhou Xin, Zhang Wenjuan, Zhang Yijun, et al. Characteristics of lightning scales and optical property in tropical cyclones over the Northwest Pacific. J Appl Meteor Sci, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106.
Citation: Zhou Xin, Zhang Wenjuan, Zhang Yijun, et al. Characteristics of lightning scales and optical property in tropical cyclones over the Northwest Pacific. J Appl Meteor Sci, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106.

西北太平洋热带气旋闪电时空尺度和光辐射能

DOI: 10.11898/1001-7313.20220106
资助项目: 

国家重点研发计划 2019YFC1510103

中国气象科学研究院基本科研业务费重点项目 2020Z009

详细信息
    通信作者:

    张文娟, zwj@cma.gov.cn

Characteristics of Lightning Scales and Optical Property in Tropical Cyclones over the Northwest Pacific

  • 摘要: 利用1998—2014年热带测雨(Tropical Rainfall Measuring Mission, TRMM)卫星上携带的闪电成像仪(lightning imaging sensor, LIS)数据, 建立西北太平洋热带气旋闪电数据集, 并研究该区域热带气旋闪电属性特征。结果表明: 热带气旋闪电各属性值均呈对数正态分布特征, 热带气旋极大值闪电更倾向于发生在海洋和热带低压强度等级。不同强度等级(热带低压、热带风暴、台风)的热带气旋闪电持续时间无明显差异, 但热带风暴强度等级的闪电空间尺度和光辐射能平均值均低于热带低压和台风。对于热带气旋的不同区域(内核、内雨带、外雨带), 内核闪电的持续时间最大、光辐射能最强, 且持续时间和光辐射能随着闪电与热带气旋中心距离的增加而逐渐减小, 外雨带达到最小值。在海陆差异方面, 热带气旋闪电在海洋上的空间尺度和光辐射能比陆地大, 而闪电持续时间无明显差异。与非热带气旋闪电相比, 热带气旋闪电的延展距离、通道面积和光辐射能均更小, 但闪电平均持续时间更长。
  • 图  1  1998—2014年LIS获得的西北太平洋热带气旋独立样本中心位置

    Fig. 1  The center position of individual tropical cyclone overpass observed by LIS during 1998-2014

    图  2  不同强度等级热带气旋闪电参量的概率(柱状) 及累积概率(曲线) 分布

    Fig. 2  Probability (the column) and cumulative probability (the curve) distributions of tropical cyclone lightning parameters at different intensity levels

    图  3  热带气旋不同区域闪电参量概率(柱状) 及累积概率(曲线) 分布

    Fig. 3  Probability (the column) and cumulative probability (the curve) distributions of lightning parameters in different areas of tropical cyclone

    图  4  不同强度等级热带气旋闪电属性参量

    (方框底部和顶部边缘分别表示第25和第75分位数;方框内水平线代表中值,菱形代表平均值)

    Fig. 4  Lightning attributes at different tropical cyclone intensity levels

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    图  5  热带气旋不同区域闪电属性参量

    (方框底部和顶部边缘分别表示第25和第75分位数;方框内水平线代表中值,菱形代表平均值)

    Fig. 5  Lightning attributes in different tropical cyclone regions

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    图  6  海陆热带气旋闪电属性参量

    (方框底部和顶部边缘分别表示第25和第75分位数;方框内水平线代表中值,菱形代表平均值)

    Fig. 6  Lightning attributes for tropical cyclones on land and ocean

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    表  1  闪电属性参量

    Table  1  Lightning attribute parameters

    参量 物理含义
    发生时间 单次LIS闪电第1个事件发生时间
    发生位置 单次LIS闪电经过光辐射能加权平均后的中心点经纬度
    光辐射能 单次LIS闪电包含的所有事件光辐射能之和(单位:J·m-2·sr-1·μm-1)
    持续时间 单次LIS闪电的第1组与最后1组间的时间差(单位: s)
    通道面积 单次LIS探测到的亮度超过背景光辐射能阈值的非重叠事件像素面积之和(单位:km2)
    延展距离 单次LIS闪电包含的所有事件中相距最远两个事件的距离(单位:km)
    下载: 导出CSV

    表  2  不同分类中热带气旋极大值闪电数量占该类闪电总数的比例(单位:%)

    Table  2  Proportion of the number of extreme lightning to the total number of lightning within tropical cyclones in different categories (unit: %)

    闪电属性 热带气旋强度等级 热带气旋区域
    热带低压 热带风暴 台风 内核 内雨带 外雨带
    持续时间 11.32 10.08 8.69 18.13 10.72 9.24
    延展距离 12.70 8.72 9.73 11.35 11.42 9.74
    通道面积 12.03 8.88 10.36 9.92 10.55 9.95
    光辐射能 13.31 8.69 9.66 14.87 12.22 9.36
    下载: 导出CSV

    表  3  热带气旋闪电与非热带气旋闪电属性参量对比

    Table  3  Comparisons of attribute parameter for lightning in tropical cyclone and non-tropical cyclone

    闪电属性 热带气旋 非热带气旋
    陆地 海洋 陆地 海洋
    持续时间/s 0.35 0.35 0.30 0.34
    延展距离/km 17.48 19.63 18.55 20.86
    通道面积/km2 326.54 388.42 354.58 416.63
    光辐射能/(J·m-2·sr-1·μm-1) 0.66 0.84 0.78 1.23
    下载: 导出CSV
  • [1] 曹祥村, 袁群哲, 杨继鉝, 等. 2005年登陆我国热带气旋特征分析. 应用气象学报, 2007, 18(3): 412-416. doi:  10.3969/j.issn.1001-7313.2007.03.019

    Cao X C, Yuan Q Z, Yang J L, et al. Features of the tropical cyclones landing on China in 2005. J Appl Meteor Sci, 2007, 18(3): 412-416. doi:  10.3969/j.issn.1001-7313.2007.03.019
    [2] 张永恒, 范广洲, 马清云, 等. 浙江省台风灾害影响评估模型. 应用气象学报, 2009, 20(6): 772-776. doi:  10.3969/j.issn.1001-7313.2009.06.017

    Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi:  10.3969/j.issn.1001-7313.2009.06.017
    [3] May P T. The organization of convection in the rainbands of tropical cyclone Laurence. Mon Wea Rev, 1996, 124(5): 807-815. doi:  10.1175/1520-0493(1996)124<0807:TOOCIT>2.0.CO;2
    [4] 徐文慧, 倪允琪. 登陆台风环流内的一次中尺度强对流过程. 应用气象学报, 2009, 20(3): 267-275. doi:  10.3969/j.issn.1001-7313.2009.03.002

    Xu W H, Ni Y Q. A strong mesoscale convective process in landfalling typhoon. J Appl Meteor Sci, 2009, 20(3): 267-275. doi:  10.3969/j.issn.1001-7313.2009.03.002
    [5] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [6] Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealed by lightning locations. Mon Wea Rev, 1999, 127(4): 520-534. doi:  10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2
    [7] 王艳, 郑栋, 张义军. 2000—2007年登陆台风中闪电活动与降水特征. 应用气象学报, 2011, 22(3): 321-328. doi:  10.3969/j.issn.1001-7313.2011.03.008

    Wang Y, Zheng D, Zhang Y J. Typhoon processes making landfall in China from 2000 to 2007. J Appl Meteor Sci, 2011, 22(3): 321-328. doi:  10.3969/j.issn.1001-7313.2011.03.008
    [8] DeMaria M, DeMaria R T, Knaff J A, et al. Tropical cyclone lightning and rapid intensity change. Mon Wea Rev, 2012, 140(6): 1828-1842. doi:  10.1175/MWR-D-11-00236.1
    [9] Zhang W J, Zhang Y J, Zheng D, et al. Relationship between lightning activity and tropical cyclone intensity over the Northwest Pacific. J Geophys Res Atmos, 2015, 120(9): 4072-4089. doi:  10.1002/2014JD022334
    [10] 王芳, 郄秀书, 崔雪东. 西北太平洋地区热带气旋闪电活动的气候学特征及其与气旋强度变化的关系. 大气科学, 2017, 41(6): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706004.htm

    Wang F, Qie X S, Cui X D. Climatological characteristics of tropical cyclone lightning activity in the Northwest Pacific and its relationship with cyclone intensity changes. Chinese J Atmos Sci, 2017, 41(6): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706004.htm
    [11] 张文娟, 张义军, 郑栋, 等. 热带气旋闪电活动特征研究综述. 海洋气象学报, 2021, 41(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202103001.htm

    Zhang W J, Zhang Y J, Zheng D, et al. An overview on the research of lightning activity in tropical cyclones. J Marine Meteor, 2021, 41(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202103001.htm
    [12] 雷小途, 张义军, 马明. 西北太平洋热电气旋的闪电特征及其与强度关系的初步分析. 海洋学报, 2009, 31(4): 29-38. doi:  10.3321/j.issn:0253-4193.2009.04.004

    Lei X T, Zhang Y J, Ma M. Preliminary analysis of lightning characteristics of thermoelectric cyclones in the Northwest Pacific and their relationship with intensity. Acta Oceanol Sinica, 2009, 31(4): 29-38. doi:  10.3321/j.issn:0253-4193.2009.04.004
    [13] 杨美荣, 袁铁, 郄秀书, 等. 西北太平洋热带气旋的闪电活动、雷达反射率和冰散射信号特征分析. 气象学报, 2011, 69(2): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102016.htm

    Yang M R, Yuan T, Qie X S, et al. Analysis of lightning activity, radar reflectance and ice scattering signal characteristics of tropical cyclone in the Northwest Pacific. Acta Meteor Sinica, 2011, 69(2): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102016.htm
    [14] Zhang W J, Zhang Y J, Zheng D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon Wea Rev, 2012, 140(11): 3573-3586. doi:  10.1175/MWR-D-11-00347.1
    [15] 杨宁, 张其林. 西太平洋台风最大风速与闪电活动特征. 大气科学学报, 2012, 35(4): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201204004.htm

    Yang N, Zhang Q L. Relationship between the maximum winds and lightning activity of 55 typhoons over the Western Pacific during 2005 and 2010. Trans Atmos Sci, 2012, 35(4): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201204004.htm
    [16] Pan L, Qie X, Wang D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv Atmos Sci, 2014, 31(3): 581-592. doi:  10.1007/s00376-013-3115-y
    [17] Kong X, Zhao Y, Qiu Z, et al. A simple method for predicting intensity change using the peak time lag between lightning and wind in tropical cyclones. Geophys Res Lett, 2021, 48. DOI:  10.1029/2020GL088872.
    [18] Peterson M, Liu C. Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J Geophys Res Atmos, 2013, 118(20): 11727-11740. doi:  10.1002/jgrd.50715
    [19] Beirle S, Koshak W, Blakeslee R, et al. Global patterns of lightning properties derived by OTD and LIS. Nat Hazards Earth Syst Sci, 2014, 14(10): 2715-2726. doi:  10.5194/nhess-14-2715-2014
    [20] Peterson M, Deierling W, Liu C, et al. The properties of optical lightning flashes and the clouds they illuminate. J Geophys Res Atmos, 2017, 122(1): 423-442. doi:  10.1002/2016JD025312
    [21] Bruning E C, MacGorman D R. Theory and observations of controls on lightning flash size spectra. J Atmos Sci, 2013, 70(12): 4012-4029. doi:  10.1175/JAS-D-12-0289.1
    [22] Zheng D, MacGorman D R. Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos Res, 2016, 167: 249-264. doi:  10.1016/j.atmosres.2015.08.015
    [23] Zhang Z, Zheng D, Zhang Y, et al. Spatial-temporal characteristics of lightning flash size in a supercell storm. Atmos Res, 2017, 197(11): 201-210.
    [24] 郄秀书, 周筠珺, 袁铁. 卫星观测到的全球闪电活动及其地域差异. 地球物理学报, 2003, 46(6): 743-750. doi:  10.3321/j.issn:0001-5733.2003.06.004

    Qie X S, Zhou Y J, Yuan T. Global lightning activities and their regional differences observed from the satellite. Chinese J Geophys, 2003, 46(6): 743-750. doi:  10.3321/j.issn:0001-5733.2003.06.004
    [25] 戴建华, 秦虹, 郑杰. 用TRMM/LIS资料分析长江三角洲地区的闪电活动. 应用气象学报, 2005, 16(6): 728-736. doi:  10.3969/j.issn.1001-7313.2005.06.003

    Dai J H, Qin H, Zheng J. Analysis of lightning activity over the Yangtze River Delta using TRMM/LIS observations. J Appl Meteor Sci, 2005, 16(6): 728-736. doi:  10.3969/j.issn.1001-7313.2005.06.003
    [26] 赵珊珊, 高歌, 孙旭光, 等. 西北太平洋热带气旋频数和强度变化趋势初探. 应用气象学报, 2009, 20(5): 555-563. doi:  10.3969/j.issn.1001-7313.2009.05.006

    Zhao S S, Gao G, Sun X G, et al. Climatological characteristics of tropical cyclones in the Northwestern Pacific. J Appl Meteor Sci, 2009, 20(5): 555-563. doi:  10.3969/j.issn.1001-7313.2009.05.006
    [27] Xu W, Rutledge S A, Zhang W. Relationships between total lightning, deep convection, and tropical cyclone intensity change. Geophys Res Atmos, 2017, 122(13): 7047-7063. doi:  10.1002/2017JD027072
    [28] 尤金, 郑栋, 姚雯, 等. 东亚和西太平洋闪电时空尺度及光辐射能. 应用气象学报, 2019, 30(2): 191-202. doi:  10.11898/1001-7313.20190206

    You J, Zheng D, Yao W, et al. Spatio-temporal scale and optical radiance of flashes over East Asia and Western Pacific areas. J Appl Meteor Sci, 2019, 30(2): 191-202. doi:  10.11898/1001-7313.20190206
    [29] Zheng D, Zhang Y, Meng Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J Geophys Res Atmos, 2018, 123(22): 12857-12876.
    [30] Duran P, Schultz C J, Bruning E C, et al. The evolution of lightning flash density, flash size, and flash energy during Hurricane Dorian's(2019) intensification and weakening. Geophys Res Lett, 2021, 48, e2020GL092067. DOI:  10.1029/2020GL092067.
    [31] Ringhausen J S, Bitzer P M. An in-depth analysis of lightning trends in Hurricane Harvey using satellite and ground-based measurements. J Geophys Res Atmos, 2021, 126, e2020JD032-859. DOI:  10.1029/2020JD032859.
    [32] Fierro A O, Mansell E R. Relationships between electrification and storm-scale properties based on idealized simulations of an intensifying hurricane-like vortex. J Atmos Sci, 2018, 75(2): 657-674. doi:  10.1175/JAS-D-17-0202.1
    [33] 阎俊岳. 近海热带气旋迅速加强的气候特征. 应用气象学报, 1996, 7(1): 28-35. http://qikan.camscma.cn/article/id/19960104

    Yan J Y. Climatological characteristics of rapidly intensifying tropical cyclones over the offshore of China. J Appl Meteor Sci, 1996, 7(1): 28-35. http://qikan.camscma.cn/article/id/19960104
    [34] Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res Atmos, 2003, 108(D1). DOI:  10.1029/2002JD002347.
    [35] You J, Zheng D, Zhang Y J, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmos Res, 2019, 223: 98-113. doi:  10.1016/j.atmosres.2019.03.013
    [36] Black R A, Hallett J. Electrification of the hurricane. J Atmos Sci, 2010, 56(12): 2004-2028.
  • 加载中
图(6) / 表(3)
计量
  • 摘要浏览量:  965
  • HTML全文浏览量:  198
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-12-03
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回