Indicator Construction and Risk Assessment of Grape Waterlogging in the Bohai Rim
-
摘要: 以中国环渤海地区葡萄主产区为研究对象, 利用1980—2019年研究区域内303个气象站逐日气象资料、葡萄发育期资料和葡萄涝渍灾情资料, 基于相对湿润度方法构建葡萄逐日涝渍指数M5i, 以历史灾情反演和灾变过程解析为主线, 采用正态分布的Lilliefors检验和t分布区间估计等方法, 构建适用于中国环渤海地区葡萄主产区的葡萄涝渍灾害等级指标体系, 利用信息扩散理论方法, 计算区域内各站点的葡萄涝渍致灾风险指数。结果表明: 构建的葡萄涝渍等级指标能够较好地反映实际受灾情况, 指标验证结果与历史记录有较高一致性; 葡萄同一发育阶段的涝渍灾害发生范围随灾害等级的加大而缩小, 不同发育阶段重度涝渍灾害发生范围随着发育进程的推进逐渐增大; 葡萄萌芽-新梢生长期和开花坐果期发生涝渍灾害的风险相对较低, 果实膨大期和着色成熟期为葡萄涝渍灾害发生的高风险时期; 葡萄涝渍灾害高风险区域主要位于山东东南部、辽宁东南部、河北东北部。Abstract: The viticulture area around the Bohai Bay is the largest grape producing area in China. Waterlogging disaster is a major agricultural meteorological disaster in China, which seriously threatens grape production. Waterlogging indexes are utilized on field crops widely, but most of them can only be evaluated after the end of the growing season, which lacks the timeliness of monitoring and evaluating the process of waterlogging disasters. Taking the main grape producing areas in the Bohai Rim of China as the research object, the waterlogging grade index is constructed based on the daily meteorological data, grape growth stage data and grape waterlogging historical disaster data from 303 meteorological stations in the study area from 1980 to 2019. In the process of index construction, the influence of previous water surplus and deficit status on the current waterlogging process is fully considered, and the climate adaptability of crops in a certain place is considered. The daily waterlogging index of grapes is constructed by referring to the relative humidity index method of crops. Taking historical disaster inversion and disaster process analysis as the main line, Lilliefors test of normal distribution and t-distribution interval estimation method are used to construct the grape waterlogging disaster grade index system suitable for the main grape producing areas around the Bohai Bay, starting from the duration and intensity of waterlogging disaster. Based on the classification index of grape waterlogging disasters constructed above, the frequency of waterlogging disasters at each site in the Bohai Rim from 1980 to 2019 is counted, and the probability of disasters at each site is obtained by using information diffusion theory. Considering the probability and intensity of waterlogging disasters of each grade, the risk index of grape waterlogging in each station in the region is calculated. The results show that the occurrence range of waterlogging disaster in the same growth period of grape decreases with the increase of the disaster level, while the occurrence range of severe waterlogging disaster in different growth periods gradually increases with the advancement of development process. The risk of grape waterlogging is relatively low during the period of bud-shoot growth and flowering and fruit-setting, while the high-risk period of grape waterlogging is the period of fruit expansion and coloring and maturity. The high-risk areas of grape waterlogging disaster are mainly located in the southeast of Shandong Province, the southeast of Liaoning Province and the northeast of Hebei Province.
-
Key words:
- the Bohai Rim;
- grape;
- waterlogging disaster;
- grade index;
- risk assessment
-
表 1 葡萄发育阶段不同持续日数过程涝渍指数M5i逐日累加值序列平均值90%置信区间
Table 1 90% confidence interval of the mean value of the cumulative M5i in the process of different duration during grape growth stages
发育阶段 90%置信区间 3~4 d 5~6 d 7 d及以上 萌芽-新梢生长期 12.8~32.0 27.6~74.3 41.6~98.8 开花坐果期 12.9~32.4 25.5~68.9 42.6~116.9 果实膨大期 13.2~33.7 25.9~71.7 44.0~128.5 着色成熟期 13.5~36.1 28.7~85.9 45.8~153.7 表 2 葡萄不同发育阶段涝渍灾害等级指标
Table 2 The grape waterlogging disaster level indicators during different growth stages
发育阶段 M5i≥3持续日数/d M5i逐日累加值 轻度涝渍 中度涝渍 重度涝渍 萌芽-新梢生长期 3~4 [13, 32] 大于32 5~6 [13, 28) [28, 74] 大于74 不小于7 [28, 42] 大于42 开花坐果期 3~4 [13, 32] 大于32 5~6 [13, 26) [26, 69] 大于69 不小于7 [26, 43] 大于43 果实膨大期 3~4 [13, 34] 大于34 5~6 [13, 26) [26, 72] 大于72 不小于7 [26, 44] 大于44 着色成熟期 3~4 [14, 36] 大于36 5~6 [14, 29) [29, 86] 大于86 不小于7 [29, 46] 大于46 表 3 葡萄涝渍灾害指标验证
Table 3 Verification of grape waterlogging disaster indicators
发生时间 发生地点 发育阶段 灾情描述 M5i≥3持续日数/d M5i≥3逐日累加值 指标计算等级 符合程度 2012-04-25 庄河 萌芽-新梢生长期 绝收 9 127 重 完全符合 1991-06-10 北京 开花坐果期 受渍,部分绝收 5 43 中 完全符合 2011-06-26 威海 开花坐果期 大量落果,减产 8 97 重 完全符合 1981-07-25 熊岳 果实膨大期 严重受渍 4 40 中 完全符合 1985-07-28 密云 果实膨大期 冲走果树 4 24 轻 不符合 1985-07-20 海城 果实膨大期 大量减产 8 103 重 完全符合 1990-07-15 塘沽 果实膨大期 部分受灾 3 17 轻 完全符合 1993-07-12 章丘 果实膨大期 部分无收 6 46 中 完全符合 1994-07-12 朝阳 果实膨大期 大面积减产 7 87 重 完全符合 2004-07-16 定陶 果实膨大期 成灾 5 39 中 完全符合 2008-07-18 威海 果实膨大期 受涝严重,绝收 10 98 重 完全符合 2008-07-18 青岛 果实膨大期 绝收 10 127 重 完全符合 2012-07-25 北京 果实膨大期 部分受灾 4 19 轻 完全符合 1988-08-08 北京 着色成熟期 严重受渍 5 39 中 完全符合 1992-08-31 威海 着色成熟期 成灾 5 70 中 完全符合 1992-09-01 大连 着色成熟期 大量减产 5 132 重 完全符合 1994-08-05 昌黎 着色成熟期 冲毁,绝收 5 87 重 完全符合 1994-08-05 青龙 着色成熟期 绝收 6 72 中 基本符合 1996-08-04 石家庄 着色成熟期 大量减产 9 219 重 完全符合 1997-08-01 承德 着色成熟期 大面积绝收 5 43 中 基本符合 1997-08-18 日照 着色成熟期 部分绝收 5 65 中 完全符合 1997-08-18 莒县 着色成熟期 绝收 6 112 重 完全符合 1997-08-18 威海 着色成熟期 大面积减产 6 175 重 完全符合 2000-08-28 青岛 着色成熟期 部分绝收 5 42 中 完全符合 2008-08-01 锦州 着色成熟期 受灾 4 27 轻 完全符合 2011-08-08 栖霞 着色成熟期 严重落果 3 20 轻 不符合 -
[1] 刘俊, 晁无疾, 亓桂梅, 等. 蓬勃发展的中国葡萄产业. 中外葡萄与葡萄酒, 2020(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-PTZP202001001.htmLiu J, Chao W J, Qi G M, et al. Booming development of Chinese grape industry. Sino-Overseas Grapevine and Wine, 2020(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-PTZP202001001.htm [2] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability Cambridge: Cambridge University Press, 2014. [3] Alexander L V, Zhang X B, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 2006, 111(D5): 1042-1063. [4] 杨建莹, 霍治国, 吴立, 等. 西南地区水稻洪涝等级评价指标构建及风险分析. 农业工程学报, 2015, 31(16): 135-144. doi: 10.11975/j.issn.1002-6819.2015.16.019Yang J Y, Huo Z G, Wu L, et al. Evaluation level construction and analysis of risk on rice flood in Southwest China. Transactions of the CSAE, 2015, 31(16): 135-144. doi: 10.11975/j.issn.1002-6819.2015.16.019 [5] 杨宏毅, 霍治国, 杨建莹, 等. 江汉和江南西部春玉米涝渍指标及风险评估. 应用气象学报, 2017, 28(2): 237-246. doi: 10.11898/1001-7313.20170211Yang H Y, Huo Z G, Yang J Y, et al. Indicators and risk of spring corn waterlogging disaster in Jianghan and west region of Jiangnan. J Appl Meteor Sci, 2017, 28(2): 237-246. doi: 10.11898/1001-7313.20170211 [6] 霍治国, 范雨娴, 杨建莹, 等. 中国农业洪涝灾害研究进展. 应用气象学报, 2017, 28(6): 641-653. doi: 10.11898/1001-7313.20170601Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi: 10.11898/1001-7313.20170601 [7] 杨振锋, 毋永龙, 徐国锋. 我国葡萄的重点产区及适栽品种. 果农之友, 2007, 8(4): 39. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZY200704033.htmYang Z F, Wu Y L, Xu G F. The key producing areas and suitable varieties of grapes in China. Fruit Growers' Friend, 2007, 8(4): 39. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZY200704033.htm [8] 李宁, 刘珍, 顾卫. 渤海与环渤海地区年降水量的统计分析. 地理研究, 2006, 25(6): 1022-1030. doi: 10.3321/j.issn:1000-0585.2006.06.009Li N, Liu Z, Gu W. Statistic analysis of average annual precipitation in the areas in and around Bohai Sea. Geographical Research, 2006, 25(6): 1022-1030. doi: 10.3321/j.issn:1000-0585.2006.06.009 [9] 李艳. 葡萄砧木的耐涝性研究. 泰安: 山东农业大学, 2013.Li Y. Study on Waterlogging Tolerance of Grape Rootstocks. Taian: Shandong Agricultural University, 2013. [10] 李华, 火兴三. 中国酿酒葡萄气候区划的水分指标. 生态学杂志, 2006, 25(9): 1124-1128. doi: 10.3321/j.issn:1000-4890.2006.09.022Li H, Huo X S. Atmospheric moisture content index in climatic zoning of grapevine cultivation in China. Chinese Journal of Ecology, 2006, 25(9): 1124-1128. doi: 10.3321/j.issn:1000-4890.2006.09.022 [11] 李瑞萍. 葡萄产量与气象条件的关系. 山西农业科学, 2006, 34(3): 40-42. doi: 10.3969/j.issn.1002-2481.2006.03.013Li R P. Relations between output of grape and meteorologic condition. Journal of Shanxi Agricultural Sciences, 2006, 34(3): 40-42. doi: 10.3969/j.issn.1002-2481.2006.03.013 [12] 张晓煜, 刘玉兰, 张磊, 等. 气象条件对酿酒葡萄若干品质因子的影响. 中国农业气象, 2007, 28(3): 326-330. doi: 10.3969/j.issn.1000-6362.2007.03.022Zhang X Y, Liu Y L, Zhang L, et al. Influence of meteorological conditions on some quality factors of wine grape. Chinese Journal of Agrometeorology, 2007, 28(3): 326-330. doi: 10.3969/j.issn.1000-6362.2007.03.022 [13] 刘玉兰, 郑有飞, 张晓煜. 气象条件对酿酒葡萄品质影响的研究进展. 中外葡萄与葡萄酒, 2006(1): 28-29. doi: 10.3969/j.issn.1004-7360.2006.01.008Liu Y L, Zheng Y F, Zhang X Y. Research progress of effect of meteorological condition on wine grape quality. Sino-Overseas Grapevine and Wine, 2006(1): 28-29. doi: 10.3969/j.issn.1004-7360.2006.01.008 [14] 鞠笑生, 杨贤为, 陈丽娟, 等. 我国单站旱涝指标确定和区域旱涝级别划分的研究. 应用气象学报, 1997, 8(1): 27-34. http://qikan.camscma.cn/article/id/19970104Ju X S, Yang X W, Chen L J, et al. Research on determination of station indexes and division of regional flood/drought grades in China. J Appl Meteor Sci, 1997, 8(1): 27-34. http://qikan.camscma.cn/article/id/19970104 [15] 鞠笑生, 邹旭恺, 张强. 气候旱涝指标方法及其分析. 自然灾害学报, 1998, 7(3): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH803.008.htmJu X S, Zou X K, Zhang Q. The method of the climatic drought-flood index and its analysis. Journal of Natural Disasters, 1998, 7(3): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH803.008.htm [16] 张存杰, 王宝灵, 刘德祥, 等. 西北地区旱涝指标的研究. 高原气象, 1998, 17(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX804.005.htmZhang C J, Wang B L, Liu D X, et al. Research on drought and flood indices in the Northwest China. Plateau Meteorology, 1998, 17(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX804.005.htm [17] 张尚印, 姚佩珍, 吴虹, 等. 我国北方旱涝指标的确定及旱涝分布状况. 自然灾害学报, 1998, 7(2): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH802.003.htmZhang S Y, Yao P Z, Wu H, et al. Determination of drought-flood index and distribution of drought-flood in the North of China. Journal of Natural Disasters, 1998, 7(2): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH802.003.htm [18] 王越, 江志红, 张强, 等. 用Palmer湿润指数作西北地区东部冬小麦旱涝评估. 应用气象学报, 2008, 19(3): 342-349. doi: 10.3969/j.issn.1001-7313.2008.03.010Wang Y, Jiang Z H, Zhang Q, et al. Evaluating aridity and wetness of the wheat with Palmer moisture anomaly index in the east of Northwest China. J Appl Meteor Sci, 2008, 19(3): 342-349. doi: 10.3969/j.issn.1001-7313.2008.03.010 [19] 王越, 江志红, 张强, 等. 基于Palmer湿润指数的旱涝指标研究. 南京气象学院学报, 2007, 30(3): 383-389. doi: 10.3969/j.issn.1674-7097.2007.03.014Wang Y, Jiang Z H, Zhang Q, et al. Comparative study of Palmer's moisture anomaly index and Z index. Journal of Nanjing Institute of Meteorology, 2007, 30(3): 383-389. doi: 10.3969/j.issn.1674-7097.2007.03.014 [20] 肖楠舒. 环渤海地区鲜食葡萄水旱灾害气象风险评估. 沈阳: 沈阳农业大学, 2020.Xiao N S. Meteorological Risk Assessment of Flood and Drought Disasters of Fresh Grape in Bohai Rim. Shenyang: Shenyang Agricultural University, 2020. [21] 马延庆, 千琼丽, 刘长民, 等. 咸阳地区葡萄霜霉病的发生规律与气象条件关系分析. 中外葡萄与葡萄酒, 2008(5): 35-37. doi: 10.3969/j.issn.1004-7360.2008.05.010Ma Y Q, Qian Q L, Liu C M, et al. Analysis on relationship of occurrence regularity of downy mildew and meteorological factors. Sino-Overseas Grapevine and Wine, 2008(5): 35-37. doi: 10.3969/j.issn.1004-7360.2008.05.010 [22] 张旭晖, 朱海涛, 杨洪建, 等. 江苏渍涝灾害影响程度评估. 江苏农业科学, 2016, 44(9): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201609117.htmZhang X H, Zhu H T, Yang H J, et al. Evaluation of the impact degree of waterlogging disaster in Jiangsu. Jiangsu Agricultural Sciences, 2016, 44(9): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201609117.htm [23] 马晓群, 吴文玉, 张辉. 农业旱涝指标及在江淮地区监测预警中的应用. 应用气象学报, 2009, 20(2): 186-194. doi: 10.3969/j.issn.1001-7313.2009.02.008Ma X Q, Wu W Y, Zhang H. The agricultural drought and flood index and its operational application to monitoring and early-warning in Jianghuai Area. J Appl Meteor Sci, 2009, 20(2): 186-194. doi: 10.3969/j.issn.1001-7313.2009.02.008 [24] 盛绍学, 霍治国, 石磊. 江淮地区小麦涝渍灾害风险评估与区划. 生态学杂志, 2010, 29(5): 985-990. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201005026.htmSheng S X, Huo Z G, Shi L. Risk assessment and regionalization of waterlogging disaster for wheat in Jianghuai Region. Chinese Journal of Ecology, 2010, 29(5): 985-990. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201005026.htm [25] 张晓煜. 中国北方酿酒葡萄生态区划. 北京: 气象出版社, 2014.Zhang X Y. Ecological Regionalization of Wine Grape in Northern China. Beijing: China Meteorological Press, 2014. [26] 温克刚, 藏建升. 中国气象灾害大典(河北卷). 北京: 气象出版社, 2007.Wen K G, Zang J S. Chinese Meteorological Disasters(Hebei). Beijing: China Meteorological Press, 2007. [27] 温克刚, 谢璞. 中国气象灾害大典(北京卷). 北京: 气象出版社, 2005.Wen K G, Xie P. Chinese Meteorological Disasters(Beijing). Beijing: China Meteorological Press, 2005. [28] 温克刚, 王宗信. 中国气象灾害大典(天津卷). 北京: 气象出版社, 2008.Wen K G, Wang Z X. Chinese Meteorological Disasters(Tianjin). Beijing: China Meteorological Press, 2008. [29] 温克刚, 王建国, 孙典卿. 中国气象灾害大典(山东卷). 北京: 气象出版社, 2006.Wen K G, Wang J G, Sun D Q. Chinese Meteorological Disasters(Shandong). Beijing: China Meteorological Press, 2006. [30] 温克刚, 李波, 孟庆楠. 中国气象灾害大典(辽宁卷). 北京: 气象出版社, 2005.Wen K G, Li B, Meng Q N. Chinese Meteorological Disasters(Liaoning). Beijing: China Meteorological Press, 2005. [31] 中国气象局. 中国气象灾害年鉴(2004-2019). 北京: 气象出版社, 2006-2019.China Meteorological Administration. China Meteorological Disasters Yearbook(2004-2019). Beijing: China Meteorological Press, 2006-2019. [32] 马姗姗, 程婷婷, 童明, 等. 影响延庆地区葡萄生长的气象灾害分析. 现代农业科技, 2018(24): 89-90. doi: 10.3969/j.issn.1007-5739.2018.24.052Ma S S, Cheng T T, Tong M, et al. Analysis on meteorological disasters affecting grape growth in Yanqing Region. Modern Agricultural Science and Technology, 2018(24): 89-90. doi: 10.3969/j.issn.1007-5739.2018.24.052 [33] 孙丽华, 张天云, 戴伟. 昌黎酿酒葡萄全生育期气象指标与预报模型//中国气象学会. 2011年第二十八届中国气象学会年会论文集, 2011: 1-6.Sun L H, Zhang T Y, Dai W. Meteorological Index and Forecast Model for the Whole Growth Period of Changli Wine Grape//Chinese Meteorological Society. Proceedings of the 28th Annual Meeting of the Chinese Meteorological Society, 2011: 1-6. [34] 贺楠. 安徽省农业旱涝灾害风险分析. 北京: 中国气象科学研究院, 2009.He N. Risk Analysis of Agricultural Drought and Flood Disaster in Anhui Province. Beijing: Chinese Academy of Meteorological Sciences, 2009. [35] Allen R G, Pereira L S, Rase D, et al. Crop Evaportranspiration Guide Lines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56, Rome, 1998. [36] 范雨娴, 霍治国, 尚莹. 湖南油菜春季涝渍灾变等级指标与灾损评估. 中国农业资源与区划, 2019, 40(9): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201909005.htmFan Y X, Huo Z G, Shang Y. Catastrophe classification indicator and yield loss analysis of oilseed rape vertical waterlogging in Hunan Province. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(9): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201909005.htm [37] 魏凤英. 现代气候统计诊断与预测技术. 北京: 气象出版社, 2007.Wei F Y. Modern Climatic Statistical Diagnosis and Prediction Techniques. Beijing: China Meteorological Press, 2007. [38] 李德, 祁宦, 马晓群. 安徽省淮北平原夏玉米主要生育时期旱涝指标与影响评估. 中国农学通报, 2013, 29(17): 208-216. doi: 10.11924/j.issn.1000-6850.2012-3888Li D, Qi H, Ma X Q. The climate index and assessment about drought and flood in maize's key growth stage in Huaibei Plain in Anhui Province. Chinese Agricultural Science Bulletin, 2013, 29(17): 208-216. doi: 10.11924/j.issn.1000-6850.2012-3888 [39] 张文彤. SPSS统计分析基础教程. 北京: 高等教育出版社, 2011.Zhang W T. SPSS Statistical Analysis Basic Tutorial. Beijing: Higher Education Press, 2011. [40] Huang C. Priciple of inmormation diffusion. Fuzzy Sets & Systems, 1997: 91(1): 69-90. [41] 刘新立. 区域水灾风险评估的理论与实践. 北京: 北京大学出版社, 2005.Liu X L. Theory and Practice of Regional Flood Risk Assessment. Beijing: Peking University Press, 2005. [42] 张少杰, 江玉红, 杨红娟, 等. 基于水文过程的泥石流预报中前期有效降水量的确定方法. 水科学进展, 2015, 26(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201501005.htmZhang S J, Jiang Y H, Yang H J, et al. An hydrology-process based method for antecedent effect rainfall determination in debris flow forecasting. Advances in Water Science, 2015, 26(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201501005.htm [43] 邱宁刚. 气象灾害对庆阳市苹果生长的影响及防御对策. 现代农业科技, 2018(16): 84-86. doi: 10.3969/j.issn.1007-5739.2018.16.053Qiu N G. Effects of meteorological disasters on apple growth in Qingyang City and countermeasures. Modern Agricultural Science and Technology, 2018(16): 84-86. doi: 10.3969/j.issn.1007-5739.2018.16.053 [44] 刘祖贵, 刘战东, 肖俊夫, 等. 苗期与拔节期淹涝抑制夏玉米生长发育、降低产量. 农业工程学报, 2013, 29(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201305009.htmLiu Z G, Liu Z D, Xiao J F, et al. Waterlogging at seedling and jointing stages inhibits growth and development, reduces yield in summer maize. Transactions of the CSAE, 2013, 29(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201305009.htm [45] 杨建莹, 霍治国, 王培娟, 等. 中国北方苹果干旱等级指标构建及危险性评价. 应用气象学报, 2021, 32(1): 25-37. doi: 10.11898/1001-7313.20210103Yang J Y, Huo Z G, Wang P J, et al. Evaluation index construction and hazard risk assessment on apple drought in Northern China. J Appl Meteor Sci, 2021, 32(1): 25-37. doi: 10.11898/1001-7313.20210103 [46] 吴立, 霍治国, 张蕾, 等. 西南地区农业洪涝等级指标构建及时空分布特征. 应用生态学报, 2015, 26(8): 2473-2481. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201508030.htmWu L, Huo Z G, Zhang L, et al. Level indicators construction and temporal-spatial distribution features of agricultural flood in the Southwest of China. Chinese Journal of Applied Ecology, 2015, 26(8): 2473-2481. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201508030.htm [47] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in Northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [48] 程雪, 孙爽, 张镇涛, 等. 我国北方地区苹果不同干旱等级时空特征. 应用气象学报, 2020, 31(4): 405-416. doi: 10.11898/1001-7313.20200403Cheng X, Sun S, Zhang Z T, et al. Spatial-temporal distribution of apples with different drought levels in Northern China. J Appl Meteor Sci, 2020, 31(4): 405-416. doi: 10.11898/1001-7313.20200403 [49] 王培娟, 霍治国, 杨建莹, 等. 基于热量指数的东北春玉米冷害指标. 应用气象学报, 2019, 30(1): 13-24. doi: 10.11898/1001-7313.20190102Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. doi: 10.11898/1001-7313.20190102