留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江上游夏季径流量年际增量预测模型及检验

庞轶舒 张俊 秦宁生 李金建

庞轶舒, 张俊, 秦宁生, 等. 长江上游夏季径流量年际增量预测模型及检验. 应用气象学报, 2022, 33(1): 115-128. DOI:  10.11898/1001-7313.20220110..
引用本文: 庞轶舒, 张俊, 秦宁生, 等. 长江上游夏季径流量年际增量预测模型及检验. 应用气象学报, 2022, 33(1): 115-128. DOI:  10.11898/1001-7313.20220110.
Pang Yishu, Zhang Jun, Qin Ningsheng, et al. Forecast model of interannual increment for summer runoff and its verification in the upper reaches of the Yangtze River. J Appl Meteor Sci, 2022, 33(1): 115-128. DOI:  10.11898/1001-7313.20220110.
Citation: Pang Yishu, Zhang Jun, Qin Ningsheng, et al. Forecast model of interannual increment for summer runoff and its verification in the upper reaches of the Yangtze River. J Appl Meteor Sci, 2022, 33(1): 115-128. DOI:  10.11898/1001-7313.20220110.

长江上游夏季径流量年际增量预测模型及检验

DOI: 10.11898/1001-7313.20220110
资助项目: 

国家自然科学基金项目 41772173

中国气象局气候变化专项 CCSF202034

四川省科技计划项目 2019YJ0620

详细信息
    通信作者:

    秦宁生, qinns0515@163.com

Forecast Model of Interannual Increment for Summer Runoff and Its Verification in the Upper Reaches of the Yangtze River

  • 摘要: 基于1980—2020年长江上游夏季径流量、降水和气温等资料, 采用小波分析、最优子集回归等方法, 分析径流量、降水量和气温的变化关系, 探讨引发径流量变化的前兆气候异常信号, 并构建径流量年际增量预测模型。结果表明: 径流量多寡直接取决于流域总降水量, 两者表现出显著的准两年周期振荡特征, 年际增量之间的相关系数(TCC)为0.88, 达到0.001显著性水平。流域平均气温对径流量变化影响相对较小。影响径流量变化的关键前兆气候信号为孟加拉湾冬季风、春季高原季风等8个气候特征量。所建模型在建模时段内(1981—2015年)的拟合值与观测值的TCC为0.81, 达到0.001显著性水平; 符号一致率(SCR)为77.1%, 在径流量变化异常年为100.0%;均方根误差为0.57。在2016—2020年的后报试验中, 模型预测与观测值的SCR为80.0 %, 均方根误差为0.99。经反演的预测径流量平均相对误差绝对值为19.3%。该模型对长江上游夏季径流量及其年际变化的预测准确率大于80%。
  • 图  1  长江上游流域气象观测站(黑色圆点) 和寸滩水文站、武隆水文站、宜昌水文观测站(红色三角) 分布

    (灰色粗实线为长江上游流域界,蓝色实线为河流)

    Fig. 1  Distribution map of meteorological observation stations (the black dot) and Cuntan, Wulong and Yichang hydrological observation stations (the red triangles) in the upper reaches of the Yangtze River

    (the gray thick solid line is the boundary of the upper reaches of the Yangtze River, the blue solid lines are for rivers)

    图  2  1980—2013年长江上游夏季径流量序列的均一化检验统计量T (虚线表示达到0.1显著性水平) (a) 以及2003—2013年宜昌水文站与三峡水库入库夏季径流量的相对误差绝对值(b)

    Fig. 2  The homogeneity test result T of summer runoff series of upper reaches of the Yangtze River from 1980 to 2013 (the dashed line denotes 0.1 significant level) (a) and the absolute relative error of summer runoff between Yichang hydrological station and Three Gorges Reservoir from 2003 to 2013

    图  3  1980—2020年夏季长江上游流域要素距平值  (a)径流量,(b)总降水量,(c)平均气温

    Fig. 3  Anomalies of elements in the upper reaches of the Yangtze River in summer from 1980 to 2020 (a)runoff, (b)precipitation, (c)average temperature

    图  4  1981—2015年长江上游夏季降水量与气象要素场年际增量的相关系数(等值线)

    (填色为显著性水平)
    (a)春季850 hPa和200 hPa经向风切变,(b)前期秋季海平面气压场

    Fig. 4  Correlation coefficient of annual increment between precipitation in the upper reaches of the Yangtze River in summer and meteorological elements field from 1981 to 2015 (the contour)

    (the shaded denotes significant level)
    (a)meridional wind shear between 850 hPa and 200 hPa in spring, (b)sea level pressure in preceding autumn

    图  5  1981—2015年长江上游夏季降水与春季气象要素场年际增量的相关系数

    (a)Q1 (填色为显著性水平),(b)600 hPa涡度(填色为显著性水平)、散度(等值线) 和风矢量(箭头)

    Fig. 5  Correlation coefficient of annual increment between summer precipitation in the upper reaches of the Yangtze River and meteorological elements field from 1981 to 2015

    (a)Q1 (the shaded is significant level), (b)vortex (the shaded is significant level), divergence (the contour) and wind vector (the arrow) at 600 hPa

    图  6  1981—2015年气象要素年际增量间的相关系数

    (填色为显著性水平)
    (a)春季500 hPa高度场与夏季长江上游降水量,(b)春季EUI指数与夏季500 hPa高度场和整层水汽通量,(c)春季EUI指数与夏季500 hPa垂直速度

    Fig. 6  Correlation coefficient of annual increment between meteorological elements from 1981 to 2015

    (the shaded denotes significant level)
    (a)height at 500 hPa in spring and precipitation in the upper reaches of the Yangtze River in summer, (b)EUI in spring and 500 hPa height, water vapor of the whole layer in summer, (c)EUI in spring and 500 hPa vertical velocity in summer

    图  7  1981—2015年春季北半球极涡中心经向位置指数与夏季500 hPa高度场年际增量相关系数(等值线)

    (填色为显著性水平)

    Fig. 7  Correlation coefficient (the contour) of annual increment between the Northern Hemisphere polar vortex central latitude index in spring and 500 hPa height in summer from 1981 to 2015

    (the shaded denotes significant level)

    图  8  1981—2015年前冬澳大利亚高压指数与夏季气象要素年际增量的相关系数

    (a)海平面气压(填色为显著性水平) 和925 hPa风场,(b)500 hPa高度场(填色为显著性水平) 和整层水汽场

    Fig. 8  Correlation coefficient of annual increment of Australian High index in the the preceding winter between meteorological elements in summer from 1981 to 2015

    (a)sea level pressure (the shaded denotes significant level) and wind at 925 hPa, (b)500 hPa height (the shaded denotes significant level) and the water vapor of the whole layer

    图  9  1981—2015年夏季长江上游标准化径流量年际增量(a)及径流量(b)观测值与模拟值变化曲线

    Fig. 9  The simulated and observed standardized annual increment of runoff(a) and runoff(b) in the upper reaches of the Yangtze River in summer from 1981 to 2015

    图  10  2016—2020年长江上游夏季径流量年际增量模型预测值与观测值

    (a)标准化径流量年际增量及均方根误差,(b)径流量和相对误差绝对值

    Fig. 10  The observed and forecasted value by the prediction model for annual increment of summer runoff in the upper reaches of the Yangtze River from 2016 to 2020

    (a)standardized annual increment and its root mean square error, (b)runoff and its absolute relative error

  • [1] 胡玉厚, 邱忠恩, 陈明华. 长江上游水资源开发与中下游经济社会环境发展的关系. 人民长江, 1993, 24(6): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE199306003.htm

    Hu Y H, Qiu Z E, Chen M H. Upper Yangtze water resources development and its impact on middle-lower Yangtze economy society and environment. Yangtze River, 1993, 24(6): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE199306003.htm
    [2] 沈浒英, 姜彤, 吴宜进. 1998年长江流域暴雨洪水环流背景分析. 自然灾害学报, 2000, 9(1): 7-12. doi:  10.3969/j.issn.1004-4574.2000.01.002

    Shen H Y, Jiang T, Wu Y J. Analysis on weather background for 1998 heavy flood in the Yangtze River valley. Journal of Natural Disasters, 2000, 9(1): 7-12. doi:  10.3969/j.issn.1004-4574.2000.01.002
    [3] 郁淑华. 长江上游暴雨对1998年长江洪峰影响的分析. 气象, 2000, 26(1): 56-57;65. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200001012.htm

    Yu S H. An analysis of impact of the heavy rain in upper reaches of the Yangtze river on the flood peak of the river in 1998. Meteorological Monthly, 2000, 26(1): 56-57;65. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200001012.htm
    [4] 周建中, 彭甜. 长江上游径流混沌动力特性及其集成预测研究. 长江科学院院报, 2018, 35(10): 1-9. doi:  10.11988/ckyyb.20180619

    Zhou J Z, Peng T. Chaotic dynamic characteristics and integrated prediction of runoff in the upper reaches of Yangtze river. Journal of Yangtze River Scientific Research Institute, 2018, 35(10): 1-9. doi:  10.11988/ckyyb.20180619
    [5] 李林, 王振宇, 秦宁生, 等. 长江上游径流量变化及其与影响因子关系分析. 自然资源学报, 2004, 19(6): 694-700. doi:  10.3321/j.issn:1000-3037.2004.06.002

    Li L, Wang Z Y, Qin N S, et al. Analysis of the relationship between runoff amount and its impacting factor in the upper Yangtze River. Journal of Natural Resources, 2004, 19(6): 694-700. doi:  10.3321/j.issn:1000-3037.2004.06.002
    [6] 郑巍斐, 杨肖丽, 程雪蓉, 等. 基于CMIP5和VIC模型的长江上游主要水文过程变化趋势预测. 水文, 2018, 38(6): 48-53. doi:  10.3969/j.issn.1000-0852.2018.06.009

    Zheng W F, Yang X L, Cheng X R, et al. Prediction of major water cycle change over upper Yangtze river based on CMIP5 and VIC model. Hydrology, 2018, 38(6): 48-53. doi:  10.3969/j.issn.1000-0852.2018.06.009
    [7] 张灵, 张俊, 陈良华, 等. 基于最优子集法的长江上游水文站月流量预测. 人民长江, 2014, 45(14): 10-12;16. doi:  10.3969/j.issn.1001-4179.2014.14.004

    Zhang L, Zhang J, Chen L H, et al. Study on monthly runoff prediction of upper Yangtze River based on optimal subset regression. Yangtze River, 2014, 45(14): 10-12;16. doi:  10.3969/j.issn.1001-4179.2014.14.004
    [8] 陈丽娟, 赵俊虎, 顾薇, 等. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401

    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [9] 晏红明, 王灵. 西北太平洋副高东西变动与西南地区降水的关系. 应用气象学报, 2019, 30(3): 360-375. doi:  10.11898/1001-7313.20190309

    Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi:  10.11898/1001-7313.20190309
    [10] 陶诗言, 张庆云, 张顺利. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件. 气候与环境研究, 1998, 3(4): 290-299. doi:  10.3878/j.issn.1006-9585.1998.04.01

    Tao S Y, Zhang Q Y, Zhang S L. The great floods in the Changjiang River Valley in 1998. Climatic and Environmental Research, 1998, 3(4): 290-299. doi:  10.3878/j.issn.1006-9585.1998.04.01
    [11] 陈丹, 周长艳, 邓梦雨. 西南地区夏季大气水汽含量及其与南亚高压关系. 应用气象学报, 2016, 27(4): 473-479. doi:  10.11898/1001-7313.20160410

    Chen D, Zhou C Y, Deng M Y. Characteristics of water vapor content in Southwest China and its association with the South Asia High in summer. J Appl Meteor Sci, 2016, 27(4): 473-479. doi:  10.11898/1001-7313.20160410
    [12] 晏红明, 肖子牛. 中国西南汛期降水的振动和分布及其与印度洋海温异常的关系. 气象科学, 2001, 21(1): 54-63. doi:  10.3969/j.issn.1009-0827.2001.01.007

    Yan H M, Xiao Z N. Oscillation and distribution of precipitation during rainy season in South-West China and the relation between precipitation and SSTA over India Ocean. Scientia Meteorological Sinica, 2001, 21(1): 54-63. doi:  10.3969/j.issn.1009-0827.2001.01.007
    [13] 庞轶舒, 秦宁生, 王春学, 等. ENSO事件的季节演变对西南夏季降水异常的影响分析. 高原气象, 2020, 39(3): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202003013.htm

    Pang Y S, Qin N S, Wang C X, et al. Analysis on the impact of ENSO events seasonal evolution on summer rainfall anomalies in Southwest China. Plateau Meteorology, 2020, 39(3): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202003013.htm
    [14] 张若楠, 孙丞虎, 李维京. 北极海冰与夏季欧亚遥相关型年际变化的联系及对我国夏季降水的影响. 地球物理学报, 2018, 61(1): 91-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801009.htm

    Zhang R N, Sun C H, Li W J. Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China. Chinese Journal of Geophysics, 2018, 61(1): 91-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801009.htm
    [15] 张人禾, 张若楠, 左志燕. 中国冬季积雪特征及欧亚大陆积雪对中国气候影响. 应用气象学报, 2016, 27(5): 513-526. doi:  10.11898/1001-7313.20160501

    Zhang R H, Zhang R N, Zuo Z Y. An overview of winter time snow cover characteristics over China and the impact of Eurasian snow cover on Chinese climate. J Appl Meteor Sci, 2016, 27(5): 513-526. doi:  10.11898/1001-7313.20160501
    [16] 祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展. 应用气象学报, 2019, 30(4): 401-415. doi:  10.11898/1001-7313.20190402

    Zhu C W, Liu B J, Zuo Z Y, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. doi:  10.11898/1001-7313.20190402
    [17] 丁一汇. 动力季节预报的现状和未来//中国气象学会2003年气候系统与气候变化分会论文集, 2003: 100-106.

    Ding Y H. Present Situation and Future of Dynamic Seasonal Forecast//Proceedings of Climate System and Climate Change Branch of China Meteorological Society in 2003, 2003: 100-106.
    [18] Wallace J M, Gutzler D S. Teleconnections in the geopotential height during the Northern Hemisphere winter. Mon Wea Rev, 1981, 109(4): 784-812. doi:  10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [19] Ogi M, Yamazaki K, Tachibana Y. The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J Geophys Res Atmos, 2004, 109(20): D20114.
    [20] Wang H J, Zhou G Q, Zhao Y. An effective method for correcting the seasonal-interannual prediction of summer climate anomaly. Adv Atmos Sci, 2000, 17(2): 234-240. doi:  10.1007/s00376-000-0006-9
    [21] 范可, 王会军, Young-Jean C. 一个长江中下游夏季降水的物理统计预测模型. 科学通报, 2007, 52(24): 2900-2905. doi:  10.3321/j.issn:0023-074x.2007.24.014

    Fan K, Wang H J, Young J C. A physical statistical prediction model of summer precipitation in the middle and lower reaches of the Yangtze River. Chinese Science Bulletin, 2007, 52(24): 2900-2905. doi:  10.3321/j.issn:0023-074x.2007.24.014
    [22] 郑然, 刘嘉慧敏, 马振峰. 年际增量方法在西南夏季降水预测中的应用. 气象学报, 2019, 77(3): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903008.htm

    Zheng R, Liu J H M, Ma Z F. Application of an interannual increment method for summer precipitation forecast in Southwest China. Acta Meteorological Sinica, 2019, 77(3): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903008.htm
    [23] Yanai M, Li C F, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan, 1992, 70: 189-221.
    [24] Yanai M, Li C. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Wea Rev, 1994, 122(2): 305-323. doi:  10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2
    [25] Alexandersson H. A homogeneity test applied to precipitation data. J Climatol, 1986, 6(6): 661-675. doi:  10.1002/joc.3370060607
    [26] 魏凤英. 现代气候统计诊断与预测技术(第2版). 北京: 气象出版社, 2007.

    Wei F Y. Statistical Diagnosis and Prediction Techniques of Modern Climate(2nd Ed). Beijing: China Meteorological Press, 2007.
    [27] 周月华, 刘敏, 万素琴, 等. 湖北省气候业务技术手册. 北京: 气象出版社, 2019.

    Zhou Y H, Liu M, Wan S Q, et al. Climate Business Technological Manual of Hubei Province. Beijing: China Meteorological Press, 2019.
    [28] 舒卫民, 李秋平, 王汉涛, 等. 气候变化及人类活动对三峡水库入库径流特性影响分析. 水力发电, 2016, 42(11): 29-33. doi:  10.3969/j.issn.0559-9342.2016.11.008

    Shu W M, Li Q P, Wang H T, et al. Impact analysis of climatic changes human activities on characteristics of inflow runoff of Three Gorges Reservoir. Water Power, 2016, 42(11): 29-33. doi:  10.3969/j.issn.0559-9342.2016.11.008
    [29] 赵军凯, 李九发, 戴志军, 等. 长江宜昌站径流变化过程分析. 资源科学, 2012, 34(12): 2306-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201212014.htm

    Zhao J K, Li J F, Dai Z J, et al. Analysis the runoff variation of Yangtze River in Yichang. Resources Science, 2012, 34(12): 2306-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201212014.htm
    [30] 冯瑞瑞, 荣艳淑, 殷雨婷. 三峡大坝建设前后对长江上游径流联合分布影响的分析. 北京师范大学学报(自然科学版), 2020, 56(3): 334-342. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ202003004.htm

    Feng R R, Rong Y S, Yin Y T. Influence of three gorges DAM construction on runoff distribution in the upper reaches of the Yangtze River. Journal of Beijing Normal University (Nat Sci Ed), 2020, 56(3): 334-342. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ202003004.htm
    [31] 孙淑清, 陈隽. 冬季风异常与环流的隔季相关//亚洲季风研究的新进展. 北京: 气象出版社, 1996: 99-107.

    Sun S Q, Chen J. The Anomalous Winter Monsoon and Its Relation to the Interseasonal Connection of Circulation//The Recent Advances in Asian Monsoon Research. Beijing: China Meteorological Press, 1996: 99-107.
    [32] 梁红丽, 肖子牛, 晏红明. 孟加拉湾冬季风及其与亚洲夏季气候的关系. 热带气象学报, 2004, 20(5): 537-547. doi:  10.3969/j.issn.1004-4965.2004.05.010

    Liang H L, Xiao Z N, Yan H M. Relationship between the Bay of Bengal winter monsoon and the summer climate change in Asia. Journal of Tropical Meteorology, 2004, 20(5): 537-547. doi:  10.3969/j.issn.1004-4965.2004.05.010
    [33] 蒋兴文, 李跃清, 李春, 等. 四川盆地夏季水汽输送特征及其对旱涝的影响. 高原气象, 2007, 26(3): 476-484. doi:  10.3321/j.issn:1000-0534.2007.03.006

    Jiang X W, Li Y Q, Li C, et al. Characteristics of summer water vapor transportation in Sichuan Basin and its relationship with regional drought and flood. Plateau Meteorology, 2007, 26(3): 476-484. doi:  10.3321/j.issn:1000-0534.2007.03.006
    [34] 周顺武, 假拉. 印度季风的年际变化与高原夏季旱涝. 高原气象, 2003, 22(4): 410-415. doi:  10.3321/j.issn:1000-0534.2003.04.016

    Zhou S W, Jia L. Interannual variation of Indian monsoon and summer flood/drought over Tibetan Plateau. Plateau Meteorology, 2003, 22(4): 410-415. doi:  10.3321/j.issn:1000-0534.2003.04.016
    [35] 庞轶舒, 秦宁生, 罗玉, 等. 秋季热带印度洋偶极子年际振荡对长江上游径流量多寡的影响分析. 高原气象, 2021, 40(2): 353-366. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102012.htm

    Pang Y S, Qin N S, Luo Y, et al. Analysis on effect of tropical Indian Ocean Dipole inter-annual oscillation on annual variation of runoff in the upper reaches of Yangtze River. Plateau Meteorology, 2021, 40(2): 353-366. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102012.htm
    [36] 朱益民, 杨修群, 陈晓颖, 等. ENSO与中国夏季年际气候异常关系的年代际变化. 热带气象学报, 2007, 23(2): 105-116. doi:  10.3969/j.issn.1004-4965.2007.02.001

    Zhu Y M, Yang X Q, Chen X Y, et al. Interdecadal variation of the relationship between ENSO and summer internnual climate variability in China. Journal of Tropical Meteorology, 2007, 23(2): 105-116. doi:  10.3969/j.issn.1004-4965.2007.02.001
    [37] 杨含雪, 肖天贵, 金荣花. 北半球夏季EAP遥相关型的时空及环流特征研究. 成都信息工程大学学报, 2018, 33(4): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201804013.htm

    Yang H X, Xiao T G, Jin R H. Analysis of time and space and circulation characteristics of EAP teleconnection patterns in the Northern Hemisphere in summer. Journal of Chengdu University of Information Technology, 2018, 33(4): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201804013.htm
    [38] Rao S A, Behera S K, Masumoto Y, et al. Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Research. Part Ⅱ: Topical Studies in Oceanography, 2002, 49(7/8): 1549-1572. http://www.sciencedirect.com/science/article/pii/S0967064501001588
    [39] Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean. Nature, 1999, 401(6751): 360-363.
    [40] 刘宣飞, 袁慧珍. 印度洋偶极子与中国秋季降水的关系. 南京气象学院学报, 2006, 29(5): 644-649. doi:  10.3969/j.issn.1674-7097.2006.05.009

    Liu X F, Yuan H Z. Relationship between the Indian Ocean Dipole and autumn rainfall in China. Journal of Nanjing Institute of Meteorology, 2006, 29(5): 644-649. doi:  10.3969/j.issn.1674-7097.2006.05.009
    [41] Zhao P, Chen L X. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv Atmos Sci, 2001, 18(1): 106-116. doi:  10.1007/s00376-001-0007-3
    [42] 柏晶瑜, 徐祥德, 周玉淑, 等. 春季青藏高原感热异常对长江中下游夏季降水影响的初步研究. 应用气象学报, 2003, 14(3): 363-368. doi:  10.3969/j.issn.1001-7313.2003.03.012

    Bai J Y, Xu X D, Zhou Y S, et al. Preliminary research on inhomogeneous distribution of Tibetan Plateau sensible heat fluxes in spring. J Appl Meteor Sci, 2003, 14(3): 363-368. doi:  10.3969/j.issn.1001-7313.2003.03.012
    [43] 戴逸飞, 李栋梁, 王慧. 青藏高原感热指数的建立及与华南降水的联系. 应用气象学报, 2017, 28(2): 157-167. doi:  10.11898/1001-7313.20170203

    Dai Y F, Li D L, Wang H. A new index for surface sensible heat FLUX over the Tibetan Plateau and its possible impacts on the rainfall in South China. J Appl Meteor Sci, 2017, 28(2): 157-167. doi:  10.11898/1001-7313.20170203
    [44] 李维京, 张若楠, 孙丞虎, 等. 中国南方旱涝年际年代际变化及成因研究进展. 应用气象学报, 2016, 27(5): 577-591. doi:  10.11898/1001-7313.20160507

    Li W J, Zhang R N, Sun C H, et al. Recent research advances on the interannual-interdecadal variations of drought/flood in South China and associated causes. J Appl Meteor Sci, 2016, 27(5): 577-591. doi:  10.11898/1001-7313.20160507
    [45] 叶笃正, 罗四维, 朱抱真. 西藏高原附近的风场结构及其对流层大气的热量平衡. 科学通报, 1957, 2(3): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB195703009.htm

    Yeh T Z, Luo S W, Zhu B Z. The heat balance of wind filed structure and the troposphere near the Tibetan Plateau. Chinese Sci Bull, 1957, 2(3): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB195703009.htm
    [46] 曾钰婵, 范广洲, 赖欣, 等. 青藏高原季风活动与大气热源/汇的关系. 高原气象, 2016, 35(5): 1148-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201605002.htm

    Zeng Y C, Fan G Z, Lai X, et al. Relationship between the Qinghai-Xizang Plateau monsoon and the atmospheric heat source/sink. Plateau Meteorology, 2016, 35(5): 1148-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201605002.htm
    [47] 庞轶舒, 马振峰, 杨淑群, 等. 盛夏高原季风指数的探讨及其对四川盆地降水的影响. 高原气象, 2017, 36(4): 886-899. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201704002.htm

    Pang Y S, Ma Z F, Yang S Q, et al. Discussion of plateau monsoon index and its impact on precipitation in Sichuan Basin in midsummer. Plateau Meteorology, 2017, 36(4): 886-899. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201704002.htm
    [48] 黄小梅, 蒋兴文, 肖丁木. 四川地区7月和8月降水异常空间型及其环流特征. 热带气象学报, 2017, 33(5): 654-665. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201705009.htm

    Huang X M, Jiang X W, Xiao D M. Analysis of July and August precipitation in spatial distribution patterns and associated atmospheric circulation characteristics in Sichuan. Journal of Tropical Meteorology, 2017, 33(5): 654-665. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201705009.htm
    [49] 沈柏竹, 廉毅, 张世轩, 等. 北极涛动、极涡活动异常对北半球欧亚大陆冬季气温的影响. 气候变化研究进展, 2012, 8(6): 434-439. doi:  10.3969/j.issn.1673-1719.2012.06.007

    Shen B Z, Lian Y, Zhang S X, et al. Impacts of Arctic Oscillation and polar vortex anomalies on winter temperature over Eurasian continent. Advances in Climate Change, 2012, 8(6): 434-439. doi:  10.3969/j.issn.1673-1719.2012.06.007
    [50] 廉毅, 布和朝鲁, 谢作威, 等. 初夏东北冷涡活动异常与北半球环流低频变化. 大气科学, 2010, 34(2): 429-439. doi:  10.3878/j.issn.1006-9895.2010.02.16

    Lian Y, Bueh C, Xie Z W, et al. The anomalous cold vortex activity in Northeast China during the early summer and the low-frequency variability of the Northern Hemispheric atmosphere circulation. Chinese Journal of Atmospheric Sciences, 2010, 34(2): 429-439. doi:  10.3878/j.issn.1006-9895.2010.02.16
    [51] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306

    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [52] 季飞, 赵俊虎, 申茜, 等. 季风与极涡的异常配置下中国夏季大尺度旱涝分布. 物理学报, 2014, 63(5): 466-475. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201405061.htm

    Ji F, Zhao J H, Shen Q, et al. The distribution of large-scale drought/flood of summer in China under different configurations of monsoon and polar vortex. Acta Physica Sinica, 2014, 63(5): 466-475. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201405061.htm
    [53] 陶诗言, 徐淑英, 郭其蕴. 夏季东亚热带和副热带地区经向和纬向环流型的特征. 气象学报, 1962, 30(2): 91-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196202000.htm

    Tao S Y, Xu S Y, Guo Q Y. The characteristics of the zonal and meridional circulation over tropical and subtropical regions in eastern Asia in summer. Acta Meteorologica Sinica, 1962, 30(2): 91-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196202000.htm
    [54] 薛峰. 南半球环流变化对东亚夏季风的影响. 气候与环境研究, 2005, 10(3): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503012.htm

    Xue F. Influence of the southern circulation on East Asian summer monsoon. Climatic and Environmental Research, 2005, 10(3): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503012.htm
    [55] 施能, 朱乾根. 南半球澳大利亚、马斯克林高压气候特征及其对我国东部夏季降水的影响. 气象科学, 1995, 15(2): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199502002.htm

    Shi N, Zhu Q G. The climatic features of the Australian High and the Mascarene High in Southern Hemisphere and their influence on summer precipitation in eastern China. Scientia Meteorologica Sinica, 1995, 15(2): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199502002.htm
    [56] 宋连春, 王朋岭, 李多, 等. 气候系统监测诊断年报: 2010. 北京: 气象出版社, 2011.

    Song L C, Wang P L, Li D, et al. Annual Report on Climate System Monitoring and Diagnosis: 2010. Beijing: China Meteorological Press, 2011.
    [57] Jolliffe I T, Stephenson D B. Forecast Verification: A Practitioner's Guide in Atmospheric Science. New Jersey: John Wiley & Sons Inc, 2003.
    [58] 张雅琦. 长江上游流域短期水文气象耦合预报技术研究. 水电与新能源, 2016, 30(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD201606001.htm

    Zhang Y Q. On the short-term hydrological and meteorological coupling forecasting techniques for upper Yangtze River basin. Hydropower and New Energy, 2016, 30(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD201606001.htm
  • 加载中
图(10)
计量
  • 摘要浏览量:  1649
  • HTML全文浏览量:  411
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-09-27
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回