Refined Assessment of Wind Environment over Winter Olympic Competition Zone Based on Large Eddy Simulation
-
摘要: 风是北京冬奥会场外赛事考虑的首要气象因素, 精细评估竞赛场地核心区域风环境对赛道施工建设、遴选防风方案及赛事安排非常必要。以北京冬奥会延庆赛区为中心, 将2009—2021年冬奥赛事月份(2—3月)天气环流场进行客观天气环流分型(分为93组), 采用北京城市气象研究院睿图-大涡模式系统对各组的典型个例开展37 m×37 m分辨率风场模拟。利用赛道周边12个自动气象站数据检验结果显示: 2 m温度、10 m风速和风向平均偏差分别为0.45℃, 1.51 m·s-1, 11.23°, 预报技巧较高。基于分型模拟数据获得赛场平均风、极大风分布及大风风险概率, 高山滑雪赛场赛道起点平均风速为15 m·s-1, 超出影响决策点概率为60%, 风险较大; 而赛道中、后段风险较小, 超过影响决策风速概率小于2%。Abstract: The near-surface wind field over complex terrain is highly non-uniform due to the influence of topographical fluctuations. Therefore, it is extremely difficult to carry out high-density observational experiments and refined assessment of wind environment in these areas. In this case, high-resolution wind field data from numerical simulations is essential for the evaluation and analysis of near-surface wind environment. A refined wind environment assessment is carried out for Xiaohaituo alpine skiing field, Yanqing competition zone of Beijing Winter Olympic Games. Firstly, the weather patterns over the alpine skiing field during the winter competition periods from 2009 to 2021 (every February and March) are divided into 5 main types according to the Lamb-Jenkinson (L-J) atmospheric circulation classification scheme, and further classified into 93 secondary circulation types according to the wind directions and speed at 700 hPa. Secondly, the coupled model system of mesoscale meteorology and large eddy simulation (RMAPS-LES) developed by Beijing Institute of Urban Meteorology is used to simulate the wind field at a horizontal resolution of 37 m for typical cases under 93 weather patterns. The comparison between the simulation results and observations at 11 automatic weather stations shows that the model simulation performs reasonably well. The results show that the average deviation of 2 m temperature is less than 2℃, which perfectly meets the accuracy requirements of weather forecast service demand. Although 10 m wind speed is slightly overestimated for the whole typical cases of different weather patterns, the average deviation is within 3 m·s-1, and the average deviation of 10 m wind direction simulation is 10.43°-12.36°, which shows a good prediction skill. Finally, based on the wind field simulation results of different weather patterns, a ten-year winter wind environment assessment is carried out to provide detailed spatial distribution characteristics of the wind field, risk ranges, locations of gale, and the risk probability of exceeding the wind speed thresholds of the sport events, so as to provide technical supports for the organization, time arrangement, track design and wind hazard protection of 2022 Beijing Winter Olympic Games. The method provides an effective way for wind energy assessment and forecast over complex terrain, as well as meteorological services for wind-sensitive activities, such as outdoor mega-events over complex terrain, small-scale environmental design for large-scale architectural complex over mountain terrain, mountain fire disaster prevention and mitigation, mountain pollution forecasting and nuclear proliferation assessment.
-
图 5 自动气象站2 m温度、10 m风速和风向检验结果
(点为平均偏差,须为标准差)
(a)31种小类环流型2 m温度检验结果,(b)不同风速组2 m温度检验结果,(c)31种小类环流型10 m风速检验结果,(d)不同风速组10 m风速检验结果,(e)31种小类环流型10 m风向检验结果,(d)不同风速组10 m风向检验结果Fig. 5 Errors of 2 m temperature and 10 m wind speed, direction at automatic weather stations
(the marker denotes the median error, the whisker denotes the standard deviation of error)
(a)2 m temperature of 31 secondary circulation types, (b)2 m temperature of three wind speed groups, (c)10 m wind speed of 31 secondary circulation types, (d)10 m wind speed of three wind speed groups, (e)10 m wind direction of 31 secondary circulation types, (f)10 m wind direction of three wind speed groups图 8 全风速组情况下,高山滑雪赛场风速超出影响赛事风速阈值的风险概率分布
(其他说明同图 6)
(a)影响决策风速11 m·s-1,(b)重点影响风速14 m·s-1,(c)关键影响风速17 m·s-1Fig. 8 Probability of wind speed exceeding the threshold of alpine skiing of all wind speed groups
(the others same as in Fig. 6)
(a)critical decision point 11 m·s-1, (b)significant decision point 14 m·s-1, (c)factor to consider 17 m·s-1图 9 仅小风速组情况下,高山滑雪赛场风速超出影响赛事风速阈值的风险概率分布
(其他说明同图 6)
(a)影响决策风速11 m·s-1,(b)重点影响风速14 m·s-1,(c)关键影响风速17 m·s-1Fig. 9 Probability of wind speed exceeding the threshold of alpine skiing of small wind speed group
(the others same as in Fig. 6)
(a)critical decision point 11 m·s-1, (b)significant decision point 14 m·s-1, (c)factor to consider 17 m·s-1表 1 L-J环流型分类
Table 1 L-J circulation classification scheme
条件 大类环流型 小类环流型 |ξ| < V 平直气流型D DE(1),DS(4),DSW(6),DWSW(11),
DWNW(16),DNW(21),DNWN(26),DN(29)V≤|ξ|≤2V且ξ≥0 气旋-平直气流混合型C-h C-hE,C-hS,C-hSW(7),C-hWSW(12),
C-hWNW(17),C-hNW(22),C-hNWN,C-hNV≤|ξ|≤2V且ξ < 0 反气旋-平直气流混合型A-h A-hE(2),A-hS,A-hSW(8),A-hWSW(13),
A-hWNW(18),A-hNW(23),A-hNWN(27),A-hN(30)|ξ|>2V且ξ≥0 气旋型C CE,CS(5),CSW(9),CWSW(14),
CWNW(19),CNW(24),CNWN,CN|ξ|>2V且ξ < 0 反气旋型A AE(3),AS,ASW(10),AWSW(15),
AWNW(20),ANW(25),ANWN(28),AN(31)注:括号内数字表示小类环流型序号。 表 2 2009—2021年2—3月延庆赛区小类环流型
Table 2 Secondary circulation types from Feb to Mar during 2009-2021 of Yanqing competition zone
风向 大类环流型 D C-h A-h C A E 13 0 6 0 6 S 42 2 5 7 2 SW 80 13 6 19 9 WSW 197 45 23 54 42 WNW 430 89 139 71 145 NW 331 43 247 37 187 NWN 189 5 180 5 152 N 71 0 85 0 84 表 3 RMAPS-LES物理参数化方案
Table 3 Schemes used in RMAPS-LES simulations
参数化方案 d01 d02 d03 d04 边界层方案 YSU LES LES LES 微物理方案 New Thompson New Thompson New Thompson New Thompson 长、短波辐射方案 RRTMG RRTMG RRTMG RRTMG 近地层方案 Revised MM5 Revised MM5 Revised MM5 Revised MM5 陆面过程方案 Noah Noah Noah Noah 积云方案 Kain-Fritsch 无 无 无 -
[1] Taylor P A, Teunissen H W. The Askervein Hill Project: Overview and background data. Bound-Layer Meteor, 1987, 39(1): 15-39. [2] Bechmann A, Sørensen N N, Berg J J, et al. The Bolund Experiment, Part Ⅱ: Blind comparison of microscale flow models. Bound-Layer Meteor, 2011, 141(2): 245-271. doi: 10.1007/s10546-011-9637-x [3] Fernando H, Mann J, Palma J, et al. The perdigo: Peering into microscale details of mountain winds. Bull Amer Meteor Soc, 2018, 100(5): 799-819. [4] 李丰, 阮征, 王红艳, 等. 基于功率谱的风廓线雷达回波强度定标方法. 应用气象学报, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305Li F, Ruan Z, Wang H Y, et al. A calibration method of wind profile radar echo intensity with Doppler velocity spectrum. J Appl Meteor Sci, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305 [5] 严嘉明, 赵兵科, 张帅, 等. 边界层风廓线雷达对登陆台风观测适用性评估. 应用气象学报, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306 [6] Stefano S, Bianca A, Joan C, et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 2018, 9(3): 102-134. doi: 10.3390/atmos9030102 [7] Jiménez P A, Kosović B. Implementation and Evaluation of a Three Dimensional PBL Parameterization for Simulations of the Flow over Complex Terrain. 17th Annual WRF Users' Workshop, 2016. [8] 朱蓉, 徐大海. 中尺度数值模拟中的边界层多尺度湍流参数化方案. 应用气象学报, 2004, 15(5): 543-555. doi: 10.3969/j.issn.1001-7313.2004.05.004Zhu R, Xu D H. Multi-scale turbulent planetary boundary layer parameterization in mesoscale numerical simulation. J Appl Meteor Sci, 2004, 15(5): 543-555. doi: 10.3969/j.issn.1001-7313.2004.05.004 [9] Cuxart J. When can a high-resolution simulation over complex terrain be called LES?. Earth Sci, 2015, 3(87): 1-6. [10] 许杨, 陈正洪, 杨宏青, 等. 风电场风电功率短期预报方法比较. 应用气象学报, 2013, 24(5): 625-630. doi: 10.3969/j.issn.1001-7313.2013.05.012Xu Y, Chen Z H, Yang H Q, et al. Comparison of short-term forecast method of wind power in wind farm. J Appl Meteor Sci, 2013, 24(5): 625-630. doi: 10.3969/j.issn.1001-7313.2013.05.012 [11] 徐晶晶, 胡非, 肖子牛, 等. 风能模式预报的相似误差订正. 应用气象学报, 2013, 24(6): 731-740. doi: 10.3969/j.issn.1001-7313.2013.06.010Xu J J, Hu F, Xiao Z N, et al. Analog bias correction of numerical model on wind power prediction. J Appl Meteor Sci, 2013, 24(6): 731-740. doi: 10.3969/j.issn.1001-7313.2013.06.010 [12] Lilly D K. On the Application of the Eddy Viscosity Concept in the Inertial Sub-range of Turbulence//NCAR Manuscript No. 123. National Center for Atmospheric Research, 1966. [13] Deardorff J W. Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci, 1972, 29: 91-115. doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 [14] Moeng C H, Sullivan P P. A Comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci, 1994, 51(7): 999-1022. doi: 10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2 [15] Chow K F, Street R L, Xue M, et al. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci, 2005, 62(7): 2058-2077. doi: 10.1175/JAS3456.1 [16] Mirocha J D, Lundquist J K, Kosović B. Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon Wea Rev, 2010, 138(11): 4212-4228. doi: 10.1175/2010MWR3286.1 [17] 刘梦娟, 张旭, 陈葆德. 边界层参数化方案在"灰色区域"尺度下的适用性评估. 大气科学, 2018, 42(1): 52-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801004.htmLiu M J, Zhang X, Chen B D. Assessment of the suitability of planetary boundary layer schemes at 'grey zone' resolutions. Chinese J Atmos Sci, 2018, 42(1): 52-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801004.htm [18] Liu Y, Warner T, Liu Y, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J Wind Eng Ind Aerod, 2011, 99(4): 308-319. doi: 10.1016/j.jweia.2011.01.013 [19] Talbot C, Bouzeid E, Smith J. Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J Hydrometeorol, 2013, 13(5): 1421-1441. http://www.researchgate.net/profile/Elie_Bou-Zeid2/publication/235342660_Nested_Mesoscale_Large-Eddy_Simulations_with_WRF_Performance_in_Real_Test_Cases/links/00b7d520a51ffb7ec4000000.pdf [20] Rai R K, Berg L K, Kosović B, et al. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Bound-Layer Meteor, 2016, 163(1): 1-21. [21] 左全, 张庆红. 大涡模拟在华北地区一次冬季辐射雾过程中的应用. 北京大学学报(自然科学版), 2016, 52(5): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201605007.htmZuo Q, Zhang Q H. Application of large eddy simulation for a winter radiation fog event in North China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201605007.htm [22] Xue L, Chu X, Rasmussen R, et al. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part Ⅱ: AgI dispersion and seeding signals simulated by WRF. J Appl Meteor Climatol, 2014, 53(10): 2264-2286. doi: 10.1175/JAMC-D-14-0017.1 [23] Gerber F, Besic N, Sharma V, et al. Spatial variability in snow precipitation and accumulation in COSMO-WRF simulations and radar estimations over complex terrain. The Cryosphere, 2018, 12(10): 3137-3160. doi: 10.5194/tc-12-3137-2018 [24] Liu Y J, Liu Y B, Muoz-Esparza D, et al. Simulation of flow fields in complex terrain with WRF-LES: Sensitivity assessment of different PBL treatments. J Appl Meteor Climatol, 2020, 59: 1481-1501. doi: 10.1175/JAMC-D-19-0304.1 [25] 张玉涛, 佟华, 孙健. 一种偏差订正方法在平昌冬奥会气象预报的应用. 应用气象学报, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103 [26] Mailhot J, Bélair S, Charron M, et al. Environment Canada's experimental numerical weather prediction systems for the Vancouver 2010 Winter Olympic and Paralympic Games. Bull Amer Meteor Soc, 2010, 91(8): 69-82. [27] Chen M X, Quan J N, Miao S G, et al. Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull, 2018, 62(2): 58-61. [28] Whiteman C D. Mountain Meteorology: Fundamentals and Applications. New York: Oxford University Press, 2000. [29] 贾春晖, 窦晶晶, 苗世光, 等. 延庆-张家口地区复杂地形冬季山谷风特征分析. 气象学报, 2019, 77(3): 475-488. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903007.htmJia, C H, Dou J J, Miao S G, et al. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing-Zhangjiakou in the winter. Acta Meteor Sinica, 2019, 77(3): 475-488. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903007.htm [30] 魏凤英. 气候统计诊断与预测方法研究进展——纪念中国气象科学研究院成立50周年. 应用气象学报, 2006, 17(6): 736-742. doi: 10.3969/j.issn.1001-7313.2006.06.011Wei F Y. Progresses on climatological statistical diagnosis and prediction methods—In commemoration of the 50 anniversaries of CAMS establishment. J Appl Meteor Sci, 2006, 17(6): 736-742. doi: 10.3969/j.issn.1001-7313.2006.06.011 [31] Jenkinson A F, Collison F P. An Initial Climatology of Gales over the North Sea//Synoptic Climatology Branch Memorandum. Bracknell. Meteorological Office, 1977: 18. [32] 郝立生, 李维京. 华北区域环流型与河北气候的关系. 大气科学学报, 2009, 32(5): 618-626. doi: 10.3969/j.issn.1674-7097.2009.05.004Hao L S, Li W J. Relationships of regional circulation patterns in North China and Hebei Province climate changes. Transactions of Atmospheric Sciences, 2009, 32(5): 618-626. doi: 10.3969/j.issn.1674-7097.2009.05.004 [33] 刘郁珏, 苗世光, 胡非, 等. 冬奥会小海坨山赛区边界层风场大涡模拟研究. 高原气象, 2018, 37(5): 1388-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201805021.htmLiu Y J, Miao S G, Hu F. Refined numerical simulation of complex terrain flow field over Xiaohaituo Mountain. Plateau Meteorology, 2018, 37(5): 1388-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201805021.htm [34] Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Mon Wea Rev, 1963, 91: 99-152. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [35] 刘郁珏, 苗世光, 刘磊, 等. 修正WRF次网格地形方案及其对风速模拟的影响. 应用气象学报, 2019, 30(1): 70-81. doi: 10.11898/1001-7313.20190107Liu Y J, Miao S G, Liu L, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. J Appl Meteor Sci, 2019, 30(1): 70-81. doi: 10.11898/1001-7313.20190107 [36] 薛海乐, 沈学顺, 苏勇. 地形湍流拖曳力参数化及在GRAPES中的应用. 应用气象学报, 2011, 22(2): 169-181. http://qikan.camscma.cn/article/id/20110206Xue H L, Shen X S, Su Y. Parameterization of turbulent orographic form drag and implementation in GRAPES. J Appl Meteor Sci, 2011, 22(2): 169-181. http://qikan.camscma.cn/article/id/20110206