Retrieval and Experiments of Atmospheric Vertical Motions in Convective Precipitation Clouds
-
摘要: 为深入认识对流降水云结构及动力特征, 基于降水频段调频连续波5520 MHz垂直指向雷达(VPR-CFMCW), 使用地面至15 km高度的反射率因子及径向速度, 建立对流降水云中大气垂直运动的反演方法, 分析对流垂直结构及大气垂直运动随高度分布的演变特征。对在广东龙门测站探测的2019年4月20—22日前汛期4次对流降水进行反演试验发现, 对流降水前大气上升运动对降水云反射率因子及地面降水有正贡献, 深厚对流具有倾斜性, 会导致垂直剖面在某些时刻呈分层结构;对流降水整层以下沉运动为主导, 高层大气上升运动与下沉运动交替出现, 低层大气下沉运动占比最高, 大气上升运动在6 km高度以上占比有所增加;大气垂直速度在高层较大、在低层较小, 超过10 m·s-1的强上升运动与下沉运动多出现在6 km高度以上, 4~6 km高度垂直运动变化较大, 4 km高度以下的平均下沉运动小于5 m·s-1, 上升运动约为2 m·s-1。Abstract: Detecting the vertical motions of the atmosphere in convective clouds is difficult. The cost of aircraft detection is expensive, limited by maximum flight altitude, high detection risk, low frequency, etc. In recent years, remote sensing instruments are applied with the development of detection technology. Ground-based vertical pointing radar has become a reliable way to obtain atmospheric vertical motions, through which the cloud structure and dynamic characteristics of convective precipitation clouds can be obtained, and the distribution and evolution characteristics of the intensity and proportion of atmospheric vertical movement during the mature stage of convection can be monitored in detail. Based on the vertical structure detection data of precipitation clouds from ground to 15 km height by a vertical pointing radar with 5520 MHz C-band Frequency Modulation Continuous Wave (VPR-CFMCW) technology, the vertical motions in the convective precipitation cloud are retrieved, and the vertical structure of convection and evolution characteristics of vertical motions at different heights are analyzed. The VPR-CFMCW is used to carry out the atmospheric vertical motion retrieval experiments on 4 convective precipitation events at the Longmen Station in Guangdong Province during pre-monsoon from 20 April to 22 April in 2019. It is found that the updrafts of the atmosphere before convective precipitation have a positive contribution to the intensity of reflectivity and surface precipitation afterwards. The deep convection is inclined, which causes the vertical section to show a layered structure at certain moments. Convective precipitation is dominated by downdrafts of the entire level, updrafts and downdrafts of the upper-level atmosphere appear alternately, when downdrafts account for the highest proportion in the lower-level, and the updrafts account for an increased proportion above 6 km height. The intensity of atmospheric vertical motions is strong in the upper-level, as strong updrafts and downdrafts exceeding 10 m·s-1 mostly appear above 6 km height. The vertical motions vary greatly at 4-6 km height. The average downdraft speed is less than 5 m·s-1 and the average updraft speed is around 2 m·s-1 under 4 km height. The development of ground-based vertical pointing radar can improve the understanding of vertical structure evolution and dynamic characteristics of convective precipitation clouds.
-
图 8 滤除低速度值(|Wair|≤1 m·s-1)前后4个个例对流核的大气垂直运动
(实线表示平均值,虚线表示上升气流第5百分位数,点线表示下沉气流第95百分位数) (a)滤除前全部样本,(b)滤除后的上升气流样本,(c)滤除后的下沉气流样本
Fig. 8 The atmospheric vertical motions in convective core of four events before and after filtering the low velocity value(|Wair|≤1 m·s-1)
(the solid line denotes the average, the dashed line denotes the 5th percentile of updraft, the dotted line denotes the 95th percentile of downdraft) (a)all samples before the filtering,(b)updraft samples after the filtering, (c)downdraft samples after the filtering
-
[1] Jr Houze R A.Cloud Dynamics.San Diego,CA,USA:Academic,1993:573. [2] 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用. 应用气象学报, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106 [3] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [4] Heymsfield G M, Tian L, Heymsfield A J, et al. Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J Atmos Sci, 2010, 67(2): 285-308. doi: 10.1175/2009JAS3132.1 [5] Byers H R, Braham R R. The Thunderstorm: Report of the Thunderstorm Project. US Weather Bureau, Washington DC: 1949: 287. [6] Lemone M A, Zipser E J. Cumulonimbus vertical velocity events in GATE. Part Ⅰ: Diameter, intensity and mass flux. J Atmos Sci, 1980, 37(11): 2444-2457. doi: 10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2 [7] Anderson N F, Grainger C A, Stith J L. Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J Appl Meteorol, 2005, 44(5): 731-738. doi: 10.1175/JAM2231.1 [8] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605 [9] 冯晋勤, 刘铭, 蔡菁. 闽西山区"7·22"极端降水过程中尺度对流特征. 应用气象学报, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610 [10] Tridon F, Battaglia A. Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J Geophys Res, 2015, 120(11): 5585-5601. doi: 10.1002/2014JD023023 [11] Williams C R, Beauchamp R M, ChandrasekarV. Verticalair motions and raindrop size distributions estimated using mean Doppler velocity difference from 3- and 35-GHz vertically pointing radars. IEEE Trans Geosci Remote Sens, 2016, 54(10): 1-13. doi: 10.1109/TGRS.2016.2594250 [12] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309 [13] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [14] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [15] Cui Y, Ruan Z, Wei M, et al. Vertical structure and dynamical properties during snow events in middle latitudes of China from observations by the C-band vertically pointing radar. J Meteor Soc Japan, 2020, 98(3): 527-550. doi: 10.2151/jmsj.2020-028 [16] 阮悦, 阮征, 魏鸣, 等. 基于C-FMCW雷达的高原夏季对流云垂直结构分析研究. 高原气象, 2018, 37(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801008.htmRuan Y, Ruan Z, Wei M, et al. Research of the vertical structure of summer convective precipiationcloud over the Qinghai-Tibetan Plateau by C-FMCW radar. Plateau Meteor, 2018, 37(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801008.htm [17] 金龙, 阮征, 葛润生, 等. C-FMCW雷达对江淮降水云零度层亮带探测研究. 应用气象学报, 2016, 27(3): 312-322. doi: 10.11898/1001-7313.20160306Jin L, Ruan Z, Ge R S, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. doi: 10.11898/1001-7313.20160306 [18] Pang S Z, Ruan Z, Yang L, et al. Estimating raindrop size distributions and vertical air motions with spectral difference using vertically pointing radar. J Atmos Ocean Technol, 2021, 38: 1697-1713. [19] Giangrande S E, Collis S, Straka J, et al. A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J Appl Meteorol Clim, 2013, 52(10): 2278-2295. doi: 10.1175/JAMC-D-12-0185.1 [20] Wang D, Giangrande S E, Feng Z, et al. Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. J Geophys Res Atmos, 2020, 125(11): e2019JD031774. [21] Heymsfield A J, Westbrook C D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J Atmos Sci, 2010, 67(8): 2469-2482. doi: 10.1175/2010JAS3379.1 [22] Spek A L J, Unal C M H, Moisseev D N, et al. A new technique to categorize and retrieve the microphysical properties of ice particles above the melting layer using radar dual-polarization spectral analysis. J Atmos Ocean Technol, 2010, 25(3): 482-497. [23] Cheng L, English M. A relationship between hailstone concentration and size. J Atmos Sci, 1983, 40(1): 204-213. doi: 10.1175/1520-0469(1983)040<0204:ARBHCA>2.0.CO;2 [24] Hogan R J, Westbrook C D. Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar rayleigh-gans approximation. J Atmos Sci, 2014, 71(9): 3292-3301. doi: 10.1175/JAS-D-13-0347.1 [25] 李丰, 阮征, 王红艳, 等. 基于功率谱的风廓线雷达反射率因子定标方法. 应用气象学报, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305Li F, Ruan Z, Wang H Y, et al. A calibration method of WPR echo intensity with Doppler velocity spectrum. J Appl Meteor Sci, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305