Future Projection of Rainstorm and Flood Disaster Risk in Southwest China Based on CMIP6 Models
-
摘要: 为预估全球变暖背景下中国西南地区未来暴雨洪涝灾害风险的变化特征,研究挑选5个CMIP6模式和5个极端降水指数,结合地形因子、社会经济数据和耕地面积百分比,构建暴雨洪涝灾害风险评估模型,对西南暴雨洪涝灾害风险进行基准期(1995—2014年)评估、未来两个时期(2021—2040年,2041—2060年)3种情景(SSP1-2.6,SSP2-4.5,SSP5-8.5)下的预估和对比分析。结果表明:EC-Earth3, EC-Earth3-Veg两个单模式对5个极端降水指数的模拟效果较好,不等权重集合(UEWA-5)的效果整体优于等权重集合(EWA-5)。西南地区5个极端降水指数的高值区位于云南西部、广西东北部以及四川盆地西缘,社会脆弱性和辐射强迫越高,极端降水指数平均值和最大值越大; 从基准期到未来两个时期,5个极端降水指数均呈增大趋势。未来暴雨洪涝灾害的中高风险区和高风险区主要分布在四川成都市、重庆中心和四川盆地西部、云南昆明市、广西中南部和桂林市等局部较发达地区; 未来两个时期SSP2-4.5情景下的中高风险区和高风险区面积最大; 从基准期到未来远期,中高风险区和高风险区面积将随着时间增长而增加。Abstract: Under the background of global warming and frequent extreme weather and climate events, the occurrence of rainstorm and flood disasters in Southwest China continues to increase, causing great losses to social economy and people's lives and property. In order to project the characteristics of future rainstorm and flood disaster risk in Southwest China, 5 CMIP6 models and 5 extreme precipitation indices are selected to construct a risk assessment model, combined with topographic factors, socio-economic data and percentage of cultivated land area, by comprehensively considering disastrous factors and vulnerability. The rainstorm and flood disaster risks are mainly assessed for the baseline period (1995-2014), projected under three scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two future periods (2021-2040, 2041-2060), and comparatively analyzed. The results show that the simulation performance of EC-Earth3 and EC-Earth3-Veg on the selected 5 extreme precipitation indices is excellent, and the performance of un-equal weighted aggregation (UEWA-5) is better than equal weighted aggregation (EWA-5). According to the prediction results, 5 extreme precipitation indices are high in western Yunnan, northeastern Guangxi, and the western margin of Sichuan Basin. Higher social vulnerability and radiation forcing lead to greater extreme precipitation index. From the baseline period to the next two periods, the extreme precipitation indices and risk of disastrous factors show an increasing trend. The high vulnerability areas are distributed in the economically and agriculturally developed regional central cities and the change of vulnerability is not obvious under different scenarios. The medium-high risk areas and high risk areas of rainstorm and flood disasters are mainly distributed in Chengdu City of Sichuan, the center of Chongqing and western Sichuan Basin, Kunming City of Yunnan, Guilin City and south-central parts of Guangxi. The medium-high risk areas and high risk areas in Southwest China increase with time from the base period to the far future, especially under the SSP2-4.5 scenario.
-
表 1 CMIP6中5个模式基本信息
Table 1 Information of 5 models in CMIP6
模式名称 国家和地区 机构 格点数 BCC-CSM2-MR 中国 BCC 160×320 EC-Earth3 欧洲 EC 256×512 EC-Earth3-Veg 欧洲 EC 256×512 GFDL-ESM4 美国 NOAA-GFDL 180×288 MPI-ESM1-2-HR 德国 MPI-M 192×384 表 2 5个极端降水指数的定义
Table 2 Definitions of 5 extreme precipitation indices
指数 英文缩写 定义 单位 大雨日数 R20 日降水量不小于20 mm的日数 d 暴雨日数 R50 日降水量不小于50 mm的日数 d 5 d最大降水量 RX5day 最大连续5 d降水量 mm 年降水量 PRCPTOT 年降水量 mm 降水强度 SDII 湿日总降水量/湿日日数 mm·d-1 表 3 5个CMIP6模式的S值排名
Table 3 Ranking of S-value for 5 models in CMIP6
模式 5个极端降水指数S值排名 综合排名 R20 R50 RX5day PRCPTOT SDII BCC-CSM2-MR 3 3 4 3 4 3 EC-Earth3 2 2 2 2 2 2 EC-Earth3-Veg 1 1 1 1 1 1 GFDL-ESM4 4 4 5 5 3 4 MPI-ESM1-2-HR 5 5 3 4 5 5 表 4 西南地区暴雨洪涝灾害综合风险区面积占比(单位:%)
Table 4 Area proportion of comprehensive risk zone of rainstorm and flood disaster in Southwest China (unit: %)
情景 时期 暴雨洪涝灾害风险等级 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 基准期 25.85 53.68 13.59 5.85 1.02 SSP1-2.6 近期 22.70 54.26 14.97 6.99 1.08 远期 22.50 54.28 14.46 7.46 1.29 SSP2-4.5 近期 21.61 55.12 14.02 8.02 1.24 远期 21.46 53.16 14.58 8.92 1.88 SSP5-8.5 近期 22.04 54.60 14.38 7.81 1.17 远期 21.36 53.42 14.75 8.73 1.73 -
[1] 黄荣辉, 陈栋, 刘永. 中国长江流域洪涝灾害和持续性暴雨的发生特征及成因. 成都信息工程学院学报, 2012, 27(1): 1-19. doi: 10.3969/j.issn.1671-1742.2012.01.001Huang R H, Chen D, Liu Y. Characteristics and causes of the occurrence of flooding disaster and persistent heavy rainfall in the Yangtze River Valley of China. Journal of Chengdu University of Information Technology, 2012, 27(1): 1-19. doi: 10.3969/j.issn.1671-1742.2012.01.001 [2] 薛秋芳, 任传森, 陶诗言. 1998年长江流域洪涝的成因分析. 应用气象学报, 2001, 12(2): 246-250. doi: 10.3969/j.issn.1001-7313.2001.02.015Xue Q F, Ren C S, Tao S Y. An analysis of causes for floods in Changjiang River Valley in 1998. J Appl Meteor Sci, 2001, 12(2): 246-250. doi: 10.3969/j.issn.1001-7313.2001.02.015 [3] 马啸. 2017年全国洪涝灾情综述. 中国防汛抗旱, 2018, 28(8): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201808024.htmMa X. Summary of national flood disasters in 2017. China Flood & Drought Management, 2018, 28(8): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201808024.htm [4] 杨凡, 李谢辉. 西南地区主要农业气象灾害时空变化特征及趋势分析. 气候变化研究快报, 2020, 9(6): 738-751.Yang F, Li X H. Spatial and temporal change characteristics and trend analysis of main agrometeorological disaster in Southwestern China. Climate Change Research Letters, 2020, 9(6): 738-751. [5] 王玉洁, 周波涛, 任玉玉, 等. 全球气候变化对我国气候安全影响的思考. 应用气象学报, 2016, 27(6): 750-758. doi: 10.11898/1001-7313.20160612Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi: 10.11898/1001-7313.20160612 [6] 霍治国, 范雨娴, 杨建莹, 等. 中国农业洪涝灾害研究进展. 应用气象学报, 2017, 28(6): 641-653. doi: 10.11898/1001-7313.20170601Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi: 10.11898/1001-7313.20170601 [7] 马青荣, 左璇, 胡程达, 等. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409 [8] Alfieri L, Feyen L, Dottori F, et al. Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 2015, 35: 199-212. doi: 10.1016/j.gloenvcha.2015.09.004 [9] Roy S, Bose A, Chowdhury I R. Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arab J Geosci, 2021, 14(11). DOI: 10.1007/s12517-021-07324-8. [10] 卞洁, 李双林, 何金海. 长江中下游地区洪涝灾害风险性评估. 应用气象学报, 2011, 22(5): 604-611. doi: 10.3969/j.issn.1001-7313.2011.05.011Bian J, Li S L, He J H. Risk Assessment of flood disaster in the mid-lower reaches of the Yangtze. J Appl Meteor Sci, 2011, 22(5): 604-611. doi: 10.3969/j.issn.1001-7313.2011.05.011 [11] 徐影, 张冰, 周波涛, 等. 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估. 气候变化研究进展, 2014, 10(4): 268-275. doi: 10.3969/j.issn.1673-1719.2014.04.007Xu Y, Zhang B, Zhou B T, et al. Projected risk of flooding disaster in China based on CMIP5 models. Climate Change Research, 2014, 10(4): 268-275. doi: 10.3969/j.issn.1673-1719.2014.04.007 [12] 李柔珂, 李耀辉, 徐影. 未来中国地区的暴雨洪涝灾害风险预估. 干旱气象, 2018, 36(3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803001.htmLi R K, Li Y H, Xu Y. Projection of rainstorm and flooding disaster risk in China in the 21st Century. Journal of Arid Meteorology, 2018, 36(3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803001.htm [13] 芦佳玉, 延军平, 曹永旺. 1961-2015年西南地区降水及洪涝指数空间分布特征. 长江流域资源与环境, 2017, 26(10): 1711-1720. doi: 10.11870/cjlyzyyhj201710023Lu J Y, Yan J P, Cao Y W. Spatial distribution characteristics of precipitation and flood index in Southwestern China during 1961-2015. Resources and Environment in the Yangtze Basin, 2017, 26(10): 1711-1720. doi: 10.11870/cjlyzyyhj201710023 [14] 严志涛, 李谢辉, 刘子堂, 等. 气候变暖背景下西南四省市暴雨洪涝灾害风险变化. 灾害学, 2021, 36(2): 200-207. doi: 10.3969/j.issn.1000-811X.2021.02.035Yan Z T, Li X H, Liu Z T, et al. Risk change of rainstorm and flood disaster in four provinces and cities of Southwestern China under the background of climate warming. Journal of Catastrophology, 2021, 36(2): 200-207. doi: 10.3969/j.issn.1000-811X.2021.02.035 [15] 丁文荣. 西南地区极端降水的时空变化特征. 长江流域资源与环境, 2014, 23(7): 1029-1037. doi: 10.11870/cjlyzyyhj201407019Ding W R. Spatial and temporal variability of the extreme daily precipitation in Southwestern China. Resources and Environment in the Yangtze Basin, 2014, 23(7): 1029-1037. doi: 10.11870/cjlyzyyhj201407019 [16] 张武龙, 张井勇, 范广洲. CMIP5模式对我国西南地区干湿季降水的模拟和预估. 大气科学, 2015, 39(3): 559-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503010.htmZhang W L, Zhang J Y, Fan G Z. Evaluation and projection of dry and wet season precipitation in Southwestern China using CMIP5 models. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 559-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503010.htm [17] 胡祖恒, 李永华, 胡跃文, 等. CMIP5和RegCM4.0模式对西南区域未来降水的预估. 中低纬山地气象, 2020, 44(5): 19-25. doi: 10.3969/j.issn.1003-6598.2020.05.003Hu Z H, Li Y H, Hu Y W, et al. Prediction of future precipitation in Southwestern China by CMIP5 and RegCM4.0 models. Mid-Low Latitude Mountain Meteorology, 2020, 44(5): 19-25. doi: 10.3969/j.issn.1003-6598.2020.05.003 [18] 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估. 地球物理学报, 2015, 58(9): 3048-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201509003.htmWu J, Zhou B T, Xu Y. Response of precipitation and its extremes over China to warming CMIP5 simulation and projection. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201509003.htm [19] 成菲, 李巧萍, 沈新勇, 等. BCC-CSM1.1m对欧亚积雪覆盖的预测评估. 应用气象学报, 2021, 32(5): 553-566. doi: 10.11898/1001-7313.20210504Cheng F, Li Q P, Shen X Y, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. doi: 10.11898/1001-7313.20210504 [20] 赵宗慈, 罗勇, 黄建斌. 从检验CMIP5气候模式看CMIP6地球系统模式的发展. 气候变化研究进展, 2018, 14(6): 643-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806012.htmZhao Z C, Luo Y, Huang J B. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models. Climate Change Research, 2018, 14(6): 643-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806012.htm [21] 向竣文, 张利平, 邓瑶, 等. 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估. 武汉大学学报(工学版), 2021, 54(1): 46-57;81. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202101008.htmXiang J W, Zhang L P, Deng Y, et al. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 2021, 54(1): 46-57;81. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202101008.htm [22] 赵琳娜, 刘莹, 党皓飞, 等. 集合数值预报在洪水预报中的应用进展. 应用气象学报, 2014, 25(6): 641-653. http://qikan.camscma.cn/article/id/20140601Zhao L N, Liu Y, Dang H F, et al. The Progress on application of ensemble prediction to flood forecasting. J Appl Meteor Sci, 2014, 25(6): 641-653. http://qikan.camscma.cn/article/id/20140601 [23] 魏艳华, 马立平, 王丙参. 中国八大综合经济区经济发展差异测度与评价. 数量经济技术经济研究, 2020, 37(6): 89-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY202006005.htmWei Y H, Ma L P, Wang B C. Evaluation and measurement of the economic development differences among the eight comprehensive economic zones in China. The Journal of Quantitative & Technical Economics, 2020, 37(6): 89-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY202006005.htm [24] 晏红明, 王灵. 西北太平洋副高东西变动与西南地区降水的关系. 应用气象学报, 2019, 30(3): 360-375. doi: 10.11898/1001-7313.20190309Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi: 10.11898/1001-7313.20190309 [25] 王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较. 气象学报, 2021, 79(3): 369-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103001.htmWang Y, Li H X, Wang H J, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorologica Sinica, 2021, 79(3): 369-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103001.htm [26] Yue Y L, Yan D, Yue Q, et al. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos Res, 2021, 264: 105828. doi: 10.1016/j.atmosres.2021.105828 [27] 杨贵业, 裴宇菲, 宋敏红. CMIP6模式对我国西南地区降水分布的评估和预估. 自然科学, 2021, 9(6): 910-920.Yang G Y, Pei Y F, Song M H, Evaluation and projection of precipitation in Southwestern China using CMIP6 models. Open Journal of Natural Science, 2021, 9(6): 910-920. [28] 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估. 高原气象, 2015, 34(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501006.htmZhao Y F, Zhu J. Assessing quality of grid daily precipitation datasets in China in recent 50 years. Plateau Meteorology, 2015, 34(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501006.htm [29] 张杰, 曹丽格, 李修仓, 等. IPCC AR5中社会经济新情景(SSPs) 研究的最新进展. 气候变化研究进展, 2013, 9(3): 225-228. doi: 10.3969/j.issn.1673-1719.2013.03.012Zhang J, Cao L G, Li X C, et al. Advances in shared socio-economic pathways in IPCC AR5. Climate Change Research, 2013, 9(3): 225-228. doi: 10.3969/j.issn.1673-1719.2013.03.012 [30] Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev, 2019, 12(4): 1443-1475. doi: 10.5194/gmd-12-1443-2019 [31] Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability, 2016, 11(7). DOI: 10.3390/su11072106. [32] 陈晓晨. CMIP5全球气候模式对中国降水模拟能力的评估. 北京: 中国气象科学研究院, 2014.Chen X C. Assessment of Precipitation over China Simulated by CMIP5 Multi-models. Beijing: Chinese Academy of Meteorological Sciences, 2014. [33] Lin W Q, Chen H P. Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: From CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13(6): 598-603. doi: 10.1080/16742834.2020.1820303 [34] 刘珂, 许吟隆, 陶生才, 等. 多模式集合对中国气温的模拟效果及未来30年中国气温变化预估. 高原气象, 2011, 30(2): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102012.htmLiu K, Xu Y L, Tao S C, et al. Validation of multi-model ensemble to air temperature of China and projection of air temperature change in China for the next three decades. Plateau Meteorology, 2011, 30(2): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102012.htm [35] Huang P, Ying J. A Multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Climate, 2015, 28(12): 4706-4723. doi: 10.1175/JCLI-D-14-00833.1 [36] 兰明才, 胡晓琳, 刘红武, 等. 湖南近55年极端降水指数时空分布特征的季节性差异分析. 江西农业学报, 2017, 29(11): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201711023.htmLan M C, Hu X L, Liu H W, et al. Seasonal difference analysis of spatial and temporal distribution characteristics of extreme precipitation indexes in Hunan Province in recent 55 years. Acta Agriculturae Jiangxi, 2017, 29(11): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201711023.htm [37] 刘伯奇, 祝从文. 中国夏季降水预测因子潜在技巧分布图及应用. 应用气象学报, 2020, 31(5): 570-582. doi: 10.11898/1001-7313.20200505Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer rainfall in China. J Appl Meteor Sci, 2020, 31(5): 570-582. doi: 10.11898/1001-7313.20200505 [38] Taylor K E. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos, 2001, 106(D7): 7183-7192. doi: 10.1029/2000JD900719 [39] 吴绍洪, 戴尔阜, 葛全胜, 等. 综合风险防范: 中国综合气候变化风险. 北京: 科学出版社, 2011: 111-125.Wu S H, Dai E F, Ge Q S, et al. Comprehensive Risk Prevention: China's Comprehensive Climate Change Risks. Beijing: Science Press, 2011: 111-125. [40] 邵佳丽, 郑伟. 洪涝灾害危险性评估方法研究. 灾害学, 2018, 33(2): 58-63. doi: 10.3969/j.issn.1000-811X.2018.02.012Shao J L, Zheng W. Study on the flood hazard assessment method. Journal of Catastrophology, 2018, 33(2): 58-63. doi: 10.3969/j.issn.1000-811X.2018.02.012 [41] 冯强, 陶诗言, 王昂生, 等. 暴雨洪涝灾害对社会经济和人民生活的影响分析. 灾害学, 2001, 16(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200103008.htmFeng Q, Tao S Y, Wang A S, et al. Analysis of the influence of heavy-rain and flood disaster on social economy and human life. Journal of Catastrophology, 2001, 16(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200103008.htm [42] 江志红, 陈威霖, 宋洁, 等. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估. 大气科学, 2009, 33(1): 109-120. doi: 10.3878/j.issn.1006-9895.2009.01.10Jiang Z H, Chen W L, Song J, et al. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models. Chinese J Atmos Sci, 2009, 33(1): 109-120. doi: 10.3878/j.issn.1006-9895.2009.01.10 -