Daily Maximum Air Temperature Forecast Based on Fully Connected Neural Network
-
摘要: 为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日—2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolution,HRES)输出产品及中国2238个国家级地面气象站基本气象要素数据集,在全连接神经网络基础上设计4个试验,构建24 h最高气温预报神经网络模型。结果表明:加入辅助变量、时间滞后变量的特征和带有嵌入层的全连接神经网络结构的深度学习神经网络模型对HRES日最高气温预报误差均有订正效果,均方根误差降低29.72%~47.82%,温度预报准确率提高16.67%~38.89%。加入经过嵌入层处理的辅助变量后,可显著提高青藏高原中南部和西南地区东部的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高21.74%和14.17%),在此基础上加入时间滞后变量显著提高上述两个地区的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高40.98%和20.33%),且预报性能更加稳定。Abstract:
Objective forecast of maximum temperature is an important part in numerical weather prediction(NWP). The forecast uncertainty of near-surface meteorological elements is greater than that of upper atmospheric elements due to the impact of uncertainty in numerical forecasting models for sub-grid and boundary layer schemes.In recent years, meteorological observations expand rapidly, making traditional error correct method difficult to deal with the massive data. As a result, artificial intelligence has an increasingly obvious advantage in processing big data. Based on the fully connected neural network, four sensitivity experiments are designed in order to investigate the importance of auxiliary variable, time-lagged variable and the effectiveness of embedding layer in the neural network. The output products of high resolution(HRES) model of European Centre for Medium-Range Weather Forecasts(ECMWF) and the observations of basic meteorological elements of totally 2238 basic weather stations from 15 January 2015 to 31 December 2020 are employed. The training period is from 15 January 2015 to 31 December 2019, and the rest part is test period.The results show that the forecast error of daily maximum air temperature from the HRES in test period is reduced greatly by the sensitivity experiments, which add auxiliary variables, daily maximum air temperature with 1-2 lag days and embedding layer structures and their combination. The root mean square error is reduced by 29.72%-47.82% and the accuracy of temperature forecast are increased by 16.67%-38.89%, and the effects for Qinghai-Tibet Plateau is especially remarkable where the forecast error of HRES model is very high. It is preliminarily proved that the fully connected neural network with embedding layer has better overall performance than the raw fully connected neural network, and the features also affect the forecast errors and forecast skills of the model. Besides, the prediction error of neural network model with embedding layer is more stable when auxiliary variables and lag time variables are added. Positive forecasting techniques are available for almost all stations in the study, and it is possible to reduce the mean absolute error to less than 1℃ at many stations.
-
表 1 不同特征和嵌入层对全连接神经网络结构影响试验设计
Table 1 Experiments of features and embedding layers on the structure of multi-input neural network
试验 特征 辅助变量 嵌入层 时间滞后变量 1 有 无 无 无 2 有 有 无 无 3 有 有 有 无 4 有 有 有 有 表 2 各试验不同区域的正技巧站点比例(单位:%)
Table 2 Ratio of positive skills in different regions(unit: %)
试验 东北 新疆 西北地区东部 华北 青藏高原中南部 西南地区东部 长江中下游 华南 1 96.35 87.50 79.38 91.45 89.87 85.64 96.71 97.46 2 78.54 66.67 73.75 76.92 83.54 78.10 84.87 87.31 3 99.09 94.79 96.88 98.72 98.73 98.78 99.18 97.97 4 99.54 98.96 98.13 98.93 100.00 99.76 99.34 100.00 表 3 各试验不同区域平均绝对偏差不超过2℃的正技巧站点比例(单位:%)
Table 3 Positive skill ratio of mean absolute error no more than 2℃ in different regions(unit: %)
试验 东北 新疆 西北地区东部 华北 青藏高原中南部 西南地区东部 长江中下游 华南 1 98.58 89.29 96.85 99.07 57.75 78.69 97.96 97.92 2 97.09 82.81 95.76 98.89 51.52 78.82 97.48 97.67 3 99.54 97.80 100.00 99.57 79.49 92.86 99.67 99.48 4 100.00 100.00 100.00 100.00 98.73 99.02 99.83 100.00 表 4 各试验不同区域平均绝对偏差不超过1℃的正技巧站点比例(单位:%)
Table 4 Positive skill ratio of mean absolute error no more than 1℃ in different regions(unit: %)
试验 东北 新疆 西北地区东部 华北 青藏高原中南部 西南地区东部 长江中下游 华南 1 17.54 17.86 14.17 39.72 5.63 0.00 29.25 6.25 2 0.58 4.69 5.93 8.89 4.55 0.00 6.59 4.07 3 24.42 19.78 20.65 39.18 8.97 1.97 23.38 5.70 4 43.12 48.42 48.41 70.41 37.97 11.95 43.71 22.34 表 5 各试验不同区域平均正技巧评分(单位:%)
Table 5 Average positive skill scores in different regions(unit: %)
试验 东北 新疆 西北地区东部 华北 青藏高原中南部 西南地区东部 长江中下游 华南 1 19.19 23.38 35.86 23.46 57.81 33.38 25.31 28.44 2 10.84 20.05 34.72 17.60 57.16 32.47 16.14 21.17 3 20.75 27.78 36.85 23.84 64.97 39.74 26.88 30.56 4 27.20 37.40 43.47 30.72 71.04 46.46 33.18 37.53 -
[1] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heart event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304 [2] Shi L, Liang N, Xu X, et al. SA-JSTN: Self-attention joint spatiotemporal network for temperature forecasting. IEEE J Sel Top Appl Earth Obs Remote Sens, 2021, 14: 9475-9485. doi: 10.1109/JSTARS.2021.3112131 [3] Tran T T K, Lee T, Shin J Y, et al. Deep learning-based maximum temperature forecasting assisted with meta-learning for hyperparameter optimization. Atmosphere, 2020, 11(5): 487. doi: 10.3390/atmos11050487 [4] 尹姗, 李勇, 马杰, 等. 延伸期温度预报误差订正技术初探. 气象, 2020, 46(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003012.htmYin S, Li Y, Ma J, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. Meteor Mon, 2020, 46(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003012.htm [5] 吴启树, 韩美, 郭弘, 等. MOS温度预报中最优训练期方案. 应用气象学报, 2016, 27(4): 426-434. doi: 10.11898/1001-7313.20160405Wu Q S, Han M, Guo H, et al. The optimal training period scheme of MOS temperature forecast. J Appl Meteor Sci, 2016, 27(4): 426-434. doi: 10.11898/1001-7313.20160405 [6] 王丹, 王建鹏, 白庆梅, 等. 递减平均法与一元线性回归法对ECMWF温度预报订正能力对比. 气象, 2019, 45(9): 1310-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909011.htmWang D, Wang J P, Bai Q M, et al. Comparative correction of air temperature forecast from ECMWF model by the decaying averaging and the simple linear regression methods. Meteor Mon, 2019, 45(9): 1310-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909011.htm [7] 赵琳娜, 刘莹, 包红军, 等. 基于重组降水集合预报的洪水概率预报. 应用气象学报, 2017, 28(5): 544-554. doi: 10.11898/1001-7313.20170503Zhao L N, Liu Y, Bao H J, et al. The probabilistic flood prediction based on implementation of the Schaake shuffle method over the Huaihe Basin. J Appl Meteor Sci, 2017, 28(5): 544-554. doi: 10.11898/1001-7313.20170503 [8] 危国飞, 刘会军, 吴启树, 等. 多模式降水分级最优化权重集成预报技术. 应用气象学报, 2020, 31(6): 668-680. doi: 10.11898/1001-7313.20200603Wei G F, Liu H J, Wu Q S, et al. Multi-model consensus forecasting technology with optimal weight for precipitation intensity levels. J Appl Meteor Sci, 2020, 31(6): 668-680. doi: 10.11898/1001-7313.20200603 [9] Ouyang X, Chen D, Lei Y. A generalized evaluation scheme for comparing temperature products from satellite observations, numerical weather model, and ground measurements over the Tibetan Plateau. IEEE Trans Geosci Remote Sens, 2018, 56(7): 3876-3894. doi: 10.1109/TGRS.2018.2815272 [10] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101 [11] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205 [12] 刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502 [13] 孙全德, 焦瑞莉, 夏江江, 等. 基于机器学习的数值天气预报风速订正研究. 气象, 2019, 45(3): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201903012.htmSun Q D, Jiao R L, Xia J J, et al. Adjusting wind speed prediction of numerical weather forecast model based on machine learning methods. Meteor Mon, 2019, 45(3): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201903012.htm [14] 金子琪, 王新敏, 鲍艳松, 等. 基于卷积神经网络的飑线识别算法. 应用气象学报, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506 [15] Wei J, Li Z, Cribb M, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos Chem Phys, 2020, 20(6): 3273-3289. doi: 10.5194/acp-20-3273-2020 [16] Li W, Gao X, Hao Z, et al. Using deep learning for precipitation forecasting based on spatio-temporal information: A case study. Climate Dyn, 2022, 58(1): 443-457. [17] 蔡金圻, 谭桂容, 牛若芸. 基于迁移CNN的江淮持续性强降水环流分型. 应用气象学报, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J Appl Meteor Sci, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208 [18] Wang B, Lu J, Yan Z, et al. Deep Uncertainty Quantification: A Machine Learning Approach For Weather Forecasting//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2087-2095. [19] Jeong S, Park I, Kim H S, et al. Temperature prediction based on bidirectional long short-term memory and convolutional neural network combining observed and numerical forecast data. Sensors, 2021, 21(3): 941. doi: 10.3390/s21030941 [20] Rasp S, Lerch S. Neural networks for postprocessing ensemble weather forecasts. Mon Wea Rev, 2018, 146(11): 3885-3900. doi: 10.1175/MWR-D-18-0187.1 [21] 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正. 应用气象学报, 2020, 31(4): 494-503. doi: 10.11898/1001-7313.20200411Chen Y W, Huang X M, Li Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J Appl Meteor Sci, 2020, 31(4): 494-503. doi: 10.11898/1001-7313.20200411 [22] 谭江红, 陈伟亮, 王珊珊. 一种机器学习方法在湖北定时气温预报中的应用试验. 气象科技进展, 2018, 8(5): 46-50. doi: 10.3969/j.issn.2095-1973.2018.05.006Tan J H, Chen W L, Wang S S. Using a machine learning method for temperature forecast in Hubei Province. Adv Meteor Sci Tech, 2018, 8(5): 46-50. doi: 10.3969/j.issn.2095-1973.2018.05.006 [23] Cho D, Yoo C, Im J, et al. Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Space Sci, 2020, 7(4): e2019EA000740. [24] 任萍, 陈明轩, 曹伟华, 等. 基于机器学习的复杂地形下短期数值天气预报误差分析与订正. 气象学报, 2020, 78(6): 1002-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006009.htmRen P, Chen M X, Cao W H, et al. Error analysis and correction of short-term numerical weather prediction under complex terrain based on machine learning. Acta Meteor Sinica, 2020, 78(6): 1002-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006009.htm [25] Zamani J M, Cao C, Ni X, et al. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 2019, 10(7): 373. doi: 10.3390/atmos10070373 [26] Jiang G Q, Xu J, Wei J. A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys Res Lett, 2018, 45(8): 3706-3716. doi: 10.1002/2018GL077004 [27] Tran T T K, Lee T, Kim J S. Increasing neurons or deepening layers in forecasting maximum temperature time series. Atmosphere, 2020, 11(10): 1072. doi: 10.3390/atmos11101072 [28] Veldkamp S, Whan K, Dirksen S, et al. Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon Wea Rev, 2021, 149(4): 1141-1152. doi: 10.1175/MWR-D-20-0219.1 [29] Yu X, Shi S, Xu L, et al. A novel method for sea surface temperature prediction based on deep learning. Math Probl Eng, 2020: 1-9. [30] 王婧, 徐枝芳, 范广洲, 等. GRAPES_RAFS系统2 m温度偏差订正方法研究. 气象, 2015, 41(6): 719-726. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201506006.htmWang J, Xu Z F, Fan G Z, et al. Study on bias correction for the 2 m temperature forecast of GRAPES_RAFS. Meteor Mon, 2015, 41(6): 719-726. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201506006.htm [31] Zhang C J, Zeng J, Wang H Y, et al. Correction model for rainfall forecasts using the LSTM with multiple meteorological factors. Meteor Appl, 2020, 27(1): e1852. [32] 杨秋良. 面向气象云图分类的高维LBP特征选择方法. 太原: 山西大学, 2021.Yang Q L. High-dimensional LBP Feature Selection Method For Meteorological Cloud Image Classification. Taiyuan: Shanxi University, 2021. [33] 刘梦炀, 武利娟, 梁慧, 等. 一种高精度LSTM-FC大气污染物浓度预测模型. 计算机科学, 2021, 48(6A): 184-189. doi: 10.11896/jsjkx.200600090Liu M Y, Wu L J, Liang H, et al. A kind of high-precision LSTM-FC atmospheric contaminant concentrations forecasting model. Comput Sci, 2021, 48(6A): 184-189. doi: 10.11896/jsjkx.200600090 [34] 侯慧, 陈希, 李敏, 等. 一种Stacking集成结构的台风灾害下停电空间预测方法. 电力系统保护与控制, 2022(3): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202203009.htmHou H, Chen X, Li M, et al. A space prediction method for power outage in a typhoon disaster based on a Stacking integrated structure. Electr Power Syst Res, 2022(3): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202203009.htm [35] 赖训飞, 梁旭文, 谢卓辰, 等. 基于实体嵌入和长短时记忆网络的入侵检测方法. 中国科学院大学学报, 2020, 37(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB202004016.htmLai X F, Liang X W, Xie Z C, et al. Intrusion detection method based on entity embedding and long short-term memory networks. Journal of University of Chinese Academy of Sciences, 2020, 37(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB202004016.htm [36] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. arXiv preprint arXiv: 1301.3781, 2013. [37] Cerqueira V, Torgo L, Mozeti I. Evaluating time series forecasting models: An empirical study on performance estimation methods. Mach Learn, 2020, 109(11): 1997-2028. doi: 10.1007/s10994-020-05910-7 [38] 王雨. 2002年主汛期国家气象中心主客观降水预报对比检验. 气象, 2003, 29(5): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200305006.htmWang Y. Verification of NMC subjective and objective precipitation prediction during the main flood season in 2002. Meteor Mon, 2003, 29(5): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200305006.htm [39] 熊敏诠. 基于集合预报系统的日最高和最低气温预报. 气象学报, 2017, 75(2): 211-222. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201702002.htmXiong M Q. Calibrating daily 2 m maximum and minimum air temperature forecasts in the ensemble prediction system. Acta Meteor Sinica, 2017, 75(2): 211-222. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201702002.htm [40] 郝翠, 张迎新, 王在文, 等. 最优集合预报订正方法在客观温度预报中的应用. 气象, 2019, 45(8): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201908005.htmHao C, Zhang Y X, Wang Z W, et al. Application of analog ensemble rectifying method in objective temperature prediction. Meteor Mon, 2019, 45(8): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201908005.htm