留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SVD与机器学习的华南降水预报订正方法

谢舜 孙效功 张苏平 熊朝晖 魏晓敏 崔丛欣

谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. DOI:  10.11898/1001-7313.20220304..
引用本文: 谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. DOI:  10.11898/1001-7313.20220304.
Xie Shun, Sun Xiaogong, Zhang Suping, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. DOI:  10.11898/1001-7313.20220304.
Citation: Xie Shun, Sun Xiaogong, Zhang Suping, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. DOI:  10.11898/1001-7313.20220304.

基于SVD与机器学习的华南降水预报订正方法

DOI: 10.11898/1001-7313.20220304
资助项目: 

国家重点研发计划 2018YFC1506606

中国气象科学研究院基本科研业务费重点项目 2019Z003

详细信息
    通信作者:

    孙效功,邮箱:xgsun@cma.gov.cn

Precipitation Forecast Correction in South China Based on SVD and Machine Learning

  • 摘要: 降水是在多种天气系统和复杂物理过程共同影响下形成的,因此降水预报难度较大。由于数值预报模式的局限性,使得模式预报产品存在一定误差。为探讨更加有效的模式预报产品误差订正方法,基于奇异值分解(SVD)与机器学习(多元线性回归、套索回归、岭回归)构建订正模型,对2007—2019年4月1日—6月30日华南前汛期欧洲中期天气预报中心(EC)模式降水预报产品进行误差订正试验。结果表明:基于SVD与机器学习相结合的订正模型能有效降低EC模式降水预报产品在华南的预报误差,均方根误差最大优化率达4.2%,累计超过69%的站点得到不同程度的优化;SVD与机器学习相结合的订正模型能很好地处理因子间共线性问题,具有更好的鲁棒性;而对多个订正模型加权集成,均方根误差优化率达5.7%,累计超过77%的站点得到优化,显然加权集成方法订正效果不仅优于EC模式预报产品,也优于参与集成的任一订正模型。
  • 图  1  华南地面气象站分布

    Fig. 1  Distribution of ground sites in South China

    图  2  订正流程

    Fig. 2  Correction process

    图  3  EC模式预报产品均方根误差

    Fig. 3  Root mean square error of EC product

    图  4  不同模型(方法)与EC模式预报产品均方根误差差值对比

    (a)模型Ⅰ, (b)模型Ⅱ, (c)模型Ⅲ,(d)模型Ⅳ, (e)加权集成方法

    Fig. 4  Comparison of root mean square error difference of different models, method to EC product before and after correction

    (a)model Ⅰ, (b)model Ⅱ, (c)model Ⅲ, (d)model Ⅳ, (e)weighted ensemble

    图  5  正负订正幅度站点数占比

    (a)模型Ⅰ, (b)模型Ⅱ, (c)模型Ⅲ, (d)模型Ⅳ, (e)加权集成方法

    Fig. 5  Ratio of positive and negative sites to the correction amplitude

    (a)model Ⅰ, (b)model Ⅱ, (c)model Ⅲ, (d)model Ⅳ, (e)weighted ensemble

    图  6  个例代表站点位置分布

    Fig. 6  Distribution of individual representative sites

    图  7  正、负订正单站对比

    (RMSE1为EC模式预报产品的均方根误差,RMSE2为加权集成订正后的均方根误差)

    Fig. 7  Comparison of positive and negative correction sites

    (RMSE1 is root mean square error of the EC product, RMSE2 is root mean square error of weighted ensemble)

    图  8  2018年6月12日和2019年5月9日两次降水个例订正

    Fig. 8  Comparison of two precipitation cases on 12 Jun 2018 and 9 May 2019 before and after correction

    表  1  前10个模态累计方差贡献

    Table  1  Cumulative variance contribution of the top 10 modes

    模态序号 累计方差贡献
    1 0.5162
    2 0.6220
    3 0.6763
    4 0.7220
    5 0.7516
    6 0.7716
    7 0.7888
    8 0.8014
    9 0.8112
    10 0.8197
    下载: 导出CSV

    表  2  不同模型(方法)订正效果

    Table  2  Correction effect in different models and method

    模型 均方根误差/(mm·d-1) 优化率/%
    模型Ⅳ 13.26 4.1
    模型Ⅱ 13.26 4.1
    模型Ⅲ 13.24 4.2
    模型Ⅰ 13.24 4.2
    加权集成方法 13.01 5.7
    下载: 导出CSV
  • [1] Luo Y L, Zhang R H, Wan Q L, et al. The Southern China monsoon rainfall experiment (SCMREX). Bull Amer Meteor Soc, 2016, 98(5): 999-1013.
    [2] Wilks D S. Comparison of ensemble-MOS methods in the Lorenz '96 setting. Meteor Appl, 2006, 13(3): 243-256. doi:  10.1017/S1350482706002192
    [3] Scheuerer M, Hamill T M. Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted Gamma distributions. Mon Wea Rev, 2015, 143(11): 4578-4596. doi:  10.1175/MWR-D-15-0061.1
    [4] 叶笃正, 严中伟, 戴新刚, 等. 未来的天气气候预测体系. 气象, 2006, 32(4): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200604000.htm

    Ye D Z, Yan Z W, Dai X G, et al. A Discussion of future system of weather and climate prediction. Meteor Mon, 2006, 32(4): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200604000.htm
    [5] 何立富, 陈涛, 孔期. 华南暖区暴雨研究进展. 应用气象学报, 2016, 27(5): 559-569. doi:  10.11898/1001-7313.20160505

    He L F, Chen T, Kong Q. A review of studies on prefrontal torrential rain in South China. J Appl Meteor Sci, 2016, 27(5): 559-569. doi:  10.11898/1001-7313.20160505
    [6] 吴乃庚, 温之平, 邓文剑, 等. 华南前汛期暖区暴雨研究新进展. 气象科学, 2020, 40(5): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202005005.htm

    Wu N G, Wen Z P, Deng W J, et al. Advances in warm-sector heavy rainfall during the first rainy season in South China. J Meteor Sci, 2020, 40(5): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202005005.htm
    [7] 丁一汇. 中国暴雨理论的发展历程与重要进展. 暴雨灾害, 2019, 38(5): 395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905002.htm

    Ding Y H. The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain and Disasters, 2019, 38(5): 395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905002.htm
    [8] Applequist S, Gahrs G E, Pfeffer R L, et al. Comparison of methodologies for probabilistic quantitative precipitation forecasting. Wea Forecasting, 1991, 17(4): 783-799.
    [9] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503

    Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503
    [10] 李莉, 朱跃建. T213降水预报订正系统的建立与研究. 应用气象学报, 2006, 17(增刊Ⅰ): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1018.htm

    Li L, Zhu Y J. The establishment and research of T213 precipitation calibration system. J Appl Meteor Sci, 2006, 17(Suppl Ⅰ): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1018.htm
    [11] 孙靖, 程光光, 张小玲. 一种改进的数值预报降水偏差订正方法及应用. 应用气象学报, 2015, 26(2): 173-184. doi:  10.11898/1001-7313.20150205

    Sun J, Cheng G G, Zhang X L. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci, 2015, 26(2): 173-184. doi:  10.11898/1001-7313.20150205
    [12] 朱乾根, 陈晓光. 我国降水自然区域的客观划分. 南京气象学院学报, 1992, 15(4): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199204002.htm

    Zhu Q G, Chen X G. Objective division of natural rainfall regions in China. J Nanjing Ins Meteor, 1992, 15(4): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199204002.htm
    [13] 苏海晶, 王启光, 杨杰, 等. 基于奇异值分解对中国夏季降水模式误差订正的研究. 物理学报, 2013, 62(10): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201310076.htm

    Su H J, Wang Q G, Yang J, et al. Error correction on summer model precipitation of China based on the singular value decomposition. Acta Phys Sinica, 2013, 62(10): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201310076.htm
    [14] 邱崇践, 丑纪范. 天气预报的相似-动力方法. 大气科学, 1989, 13(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198901002.htm

    Qiu C J, Chou J F. Similarity of weather forecast-dynamic method. Chinese J Atmos Sci, 1989, 13(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198901002.htm
    [15] 任宏利, 丑纪范. 统计-动力相结合的相似误差订正法. 气象学报, 2005, 63(6): 988-993. doi:  10.3321/j.issn:0577-6619.2005.06.015

    Ren H L, Chou J F. Analogue correction method of errors by combining both statistical and dynamical methods together. Acta Meteor Sinica, 2005, 63(6): 988-993. doi:  10.3321/j.issn:0577-6619.2005.06.015
    [16] 王建新. 长江中下游地区梅雨期雨量场与500百帕月平均高度场的相关分析. 气象科学, 1989, 32(3): 311-321. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198903009.htm

    Wang J X. The correlation analysis of precipitation fields in the middle and lower reaches in Changjiang River during Meiyu period and 500 hPa monthly mean height fields. Scientia Meteorologica Sinica, 1989, 32(3): 311-321. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198903009.htm
    [17] 刘宗秀, 廉毅, 沈柏竹, 等. 北太平洋涛动区500 hPa高度场季节变化特征及其对中国东北区降水的影响. 应用气象学报, 2003, 14(5): 553-561. doi:  10.3969/j.issn.1001-7313.2003.05.005

    Liu Z X, Lian Y, Shen B Z, et al. Seasonal variation features of 500 hPa height in North Pacific oscillation region and its effect on precipitation in Northeast China. J Appl Meteor Sci, 2003, 14(5): 553-561. doi:  10.3969/j.issn.1001-7313.2003.05.005
    [18] 尤凤春, 丁裕国, 周煜, 等. 奇异值分解和奇异交叉谱分析方法在华北夏季降水诊断中的应用. 应用气象学报, 2003, 14(2): 176-187. doi:  10.3969/j.issn.1001-7313.2003.02.005

    You F C, Ding Y G, Zhou Y, et al. Applicability of singular value decomposition and singular cross-spectrum to diagnose of rainfall in North China. J Appl Meteor Sci, 2003, 14(2): 176-187. doi:  10.3969/j.issn.1001-7313.2003.02.005
    [19] 秦正坤, 林朝晖, 陈红, 等. 基于EOF/SVD的短期气候预测误差订正方法及其应用. 气象学报, 2011, 69(2): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102008.htm

    Qin Z K, Lin Z H, Chen H, et al. EOF/SVD-based short-term climate prediction error correction method and its application. Acta Meteor Sinica, 2011, 69(2): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102008.htm
    [20] 刘甲毅, 邓丽姣, 傅国斌, 等. 两种统计降尺度方法在秦岭山地的适用性. 应用气象学报, 2018, 29(6): 737-747. doi:  10.11898/1001-7313.20180609

    Liu J Y, Deng L J, Fu G B, et al. The applicability of two statistical down-scaling methods to the Qinling Mountains. J Appl Meteor Sci, 2018, 29(6): 737-747. doi:  10.11898/1001-7313.20180609
    [21] Ahijevych D, Pinto J O, Williams J K, et al. Probabilistic forecasts of mesoscale convective system initiation using the Random Forest data mining technique. Wea Forecasting, 2016, 31(2): 581-599. doi:  10.1175/WAF-D-15-0113.1
    [22] 林健玲, 金龙, 彭海燕. 区域降水数值预报产品人工神经网络释用预报研究. 气象科技, 2006, 34(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200601002.htm

    Lin J L, Jin L, Peng H Y. Application of numerical forecast products to regional rainfall forecasting by artificial neural network. Meteor Sci Technol, 2006, 34(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200601002.htm
    [23] Krishnamurti T N, Kishtawal C M, Larow T E, et al. Improved weather and seasonal climate forecasts from multi-model super-ensemble. Science, 1999, 285(5433): 1548-1550. doi:  10.1126/science.285.5433.1548
    [24] Li S, Wang Y, Yuan H, et al. Ensemble mean forecast skill and applications with the T213 ensemble prediction system. Adv Atmos Sci, 2016, 33(11): 1297-1305. doi:  10.1007/s00376-016-6155-2
    [25] 马清, 龚建东, 李莉, 等. 超级集合预报的误差订正与集成研究. 气象, 2008, 34(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200803009.htm

    Ma Q, Gong J D, Li L, et al. Study of bias-correction and consensus in regional multi-model super-ensemble forecast. Meteor Mon, 2008, 34(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200803009.htm
    [26] 智协飞, 赵忱. 基于集合成员订正的强降水多模式集成预报. 应用气象学报, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305

    Zhi X F, Zhao C. Heavy precipitation forecasts based on multi-model ensemble members. J Appl Meteor Sci, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305
    [27] 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正. 应用气象学报, 2020, 31(4): 494-503. doi:  10.11898/1001-7313.20200411

    Chen Y W, Huang X M, Li Y et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J Appl Meteor Sci, 2020, 31(4): 494-503. doi:  10.11898/1001-7313.20200411
    [28] 魏凤英. 现代气候统计诊断与预测技术. 北京: 气象出版社, 1999.

    Wei F Y. Modern Statistical Technnology in Climatological Diagnoses and Prediction. Beijing: China Meteorological Press, 1999.
    [29] 黄嘉佑. 气象统计分析与预报方法. 北京: 气象出版社, 2000.

    Huang J Y. Statistic Analysis and Forecast Methods in Meteorology. Beijing: China Meteorological Press, 2000.
    [30] 施能. 气象科研与预报中的多元分析方法. 北京: 气象出版社, 2002.

    Shi N. Multi-analysis in Meteorological Research and Prediction. Beijing: China Meteorological Press, 2002.
    [31] Abramson N, Braverman D J, Sebestyen G S. Pattern recognition and machine learning. Pub ASA, 2006, 103(4): 886-887.
    [32] Hart P E. The condensed nearest neighbor rule. IEEE Tran Inf Theory, 1968, 14(3): 515-516. doi:  10.1109/TIT.1968.1054155
    [33] Xi C, Ishwaran H. Random forests for genomic data analysis. Genomics, 2012, 99(6): 323-329. doi:  10.1016/j.ygeno.2012.04.003
    [34] Hu H Y, Lee Y C, Yen T M, et al. Using BPNN and DEMATEL to modify importance-performance analysis model-A study of the computer industry. Exp Sys Appl, 2009, 36(6): 9969-9979. doi:  10.1016/j.eswa.2009.01.062
    [35] Aheto J M K, Duah H O, Agbadi P, et al. A predictive model, and predictors of under-five child malaria prevalence in Ghana: How do LASSO, Ridge and Elastic net regression approaches compare?. Prev Med Rep, 2021, 25: 101475.
    [36] Melkumova L E, Shatskikh S Y. Comparing Rridge and LASSO estimators for data analysis. Procedia Engineering, 2017, 201: 746-755. doi:  10.1016/j.proeng.2017.09.615
  • 加载中
图(8) / 表(2)
计量
  • 摘要浏览量:  1398
  • HTML全文浏览量:  770
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-24
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回