Multiscale Characteristics of Two Supercell Tornados of Heilongjiang in 2021
-
摘要: 2021年6月1日和6月9日黑龙江省哈尔滨尚志市及阿城区和齐齐哈尔梅里斯区分别发生双龙卷事件。利用常规气象观测、多普勒天气雷达等资料对比分析二者的多尺度特征。结果表明:两次龙卷均发生在东北冷涡的东南象限,高空急流出口区左侧,中低层偏南气流有利于暖湿气流输送和垂直运动发展。6月1日和6月9日分别以短时强降水和雷暴大风天气为主,6月1日水汽条件、垂直运动、0~1 km高度垂直风切变和抬升凝结高度更有利于产生强龙卷,且中尺度气旋维持时间更长。干线与地面辐合线为中尺度触发机制。雷暴冷池出流与中尺度暖锋形成的伪冷锋有利于龙卷的发展和维持。龙卷出现在地面伪冷锋与干线交界处的湿区一侧,冷池前沿,龙卷母云为超级单体。暖湿气流产生的入流缺口是钩状回波发展的前兆,中等到高强度的中尺度气旋在3 km高度产生并发展,5~10 min后触地,当钩状回波与中尺度气旋同时出现时龙卷产生。Abstract:
Two strong supercell tornados hit Shangzhi Acheng of Harbin and Meilisi of Qiqihar, Heilongjiang Province on 1 June ("6·1" Tornado) and 9 June ("6·9" Tornado) in 2021. Using the conventional meteorological observations and Doppler weather radar data, the multiscale characteristics of two events are analyzed.Both events occur in the southeast quadrant of northeastern cold vortex. The left outlet of the upper-level jet stream and the southerly jet stream at lower-level are conducive to the development of vertical movement and the transport of warm-wet air. The temperature difference between 850 hPa and 500 hPa exceeds 30℃. Two storms are both triggered by mesoscale dry-lines and convergence lines. The pseudo-cold fronts, which generate from the mesoscale warm front and the cold pool coming from the thunderstorm outflow, are beneficial to the development and maintenance of tornados. Tornados appear on the wet part of the junctions between the pseudo-cold front and dry line, and in the front of cold pool. The parent storms of tornados rapidly develop into supercells as they pass over water bodies such as reservoirs and wetlands. The warm-wet inflow gap indicates the development of hook echo. Medium to strong mesocyclones firstly appear at about 3 km high, and then go upwards and downwards, touchdown 5-10 minutes later. The tornados occur when hook echoes and mesocyclones appear simultaneously.There are also some differences between them. Short-time heavy rainfall occurs on 1 June and thunder-gust occurs on 9 June with typical sounding layer structures, but "6·1" Tornado is stronger. The atmospheric instabilities are dominated by cold advection at upper-level for "6·1" Tornado but warm advection at lower-level for "6·9" Tornado. Water vapor and vertical velocity of "6·1" Tornado is more beneficial to the development of supercell than those of "6·9" Tornado. For the vertical wind shears of 0-1 km and 0-6 km, the corrected lifting condensation level and convective available potential energy (CAPE) are 12 m·s-1, 18 m·s-1, 770 m and 420 J·kg-1 for "6·1" Tornado, and 10 m·s-1, 33 m·s-1, 1100 m and 2500 J·kg-1 for "6·9" Tornado. The stronger 0-1 km wind shears and the lower corrected lifting condensation level show the possibility of intense tornado. CAPE may be underestimated because of the spatiotemporal resolution limitation for soundings.The main cause for the long duration of "6·1" Tornado is that the mesoscale vortex at 3 km altitude maintains due to the continuous warm-wet inflow. However, the strong mesocyclone of "6·9" Tornado doesn't last that long.
-
Key words:
- tornado;
- northeastern cold vortex;
- supercell thunderstorm;
- hook echo;
- mesocyclone
-
图 3 2021年“6·1”龙卷和“6·9”龙卷的500 hPa高度场(蓝色等值线,单位:dagpm)、850 hPa温度场(红色等值线,单位:℃)、850 hPa风场(风羽)和850 hPa相对湿度(填色)分布(红点为龙卷位置)
Fig. 3 The geopotential height(the blue contour, unit: dagpm) at 500 hPa, the air temperature(the red contour, unit: ℃), wind(the barb) and the relative humidity(the shaded) at 850 hPa for "6·1" Tornado and "6·9" Tornado in 2021(the red spot denotes the tornado location)
图 6 2021年6月9日16:42齐齐哈尔雷达的“6·9”龙卷超级单体和不同仰角的中尺度气旋
(环圈内为速度模糊,黄色箭头代表入流,蓝色箭头代表出流)
Fig. 6 Multiple supercell and mesocyclones at different elevations of Qiqihar radar for "6·9" Tornado at 1642 BT 9 Jun 2021
(the circle denotes velocity ambiguity, the yellow arrow denotes inflow, the blue arrow denotes outflow)
表 1 2021年“6·1”龙卷、“6·9”龙卷订正前后探空参数
Table 1 Sounding parameters before and after correction for "6·1" Tornado and "6·9" Tornado
日期 探空时间(低层水汽状态) 订正时间 订正站点 CAPE/(J·kg-1) CIN/(J·kg-1) LCL/m 2021-06-01 08:00 08:00 哈尔滨 97 13 310 (湿区) 16:00 尚志 429 0 770 20:00 16:00 哈尔滨 493 0 1528 (干区) 20:00 哈尔滨 15 230 1785 2021-06-09 08:00 08:00 齐齐哈尔 137 0 487 (湿区) 16:00 齐齐哈尔 2569 0 1116 20:00 18:00 齐齐哈尔 483 0 1863 (干区) 20:00 齐齐哈尔 938 0 1487 -
[1] Fujita T T. Tornadoes and downbursts in the context of generalized planetary scales. J Atmos Sci, 1981, 38(8): 1511-1534. doi: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2 [2] Fujita T T. The Teton-Yellowstone tornado of 21 July 1987. Mon Wea Rev, 1989, 117(9): 1913-1940. doi: 10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2 [3] Lemon L R, Doswell Ⅲ C A. Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon Wea Rev, 1979, 107(9): 1184-1197. doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2 [4] Doswell D C, Bluestein H B. The 8 June 1995 Mclean, Texas, storm. Part Ⅰ: Observations of cyclic tornadogenesis. Mon Wea Rev, 2002, 130(11): 2626-2648. doi: 10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2 [5] Markowski P M. Hook echoes and rear-flank downdrafts: A review. Mon Wea Rev, 2002, 130(4): 852-876. doi: 10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2 [6] Wurman J, Richardson Y, Alexander C, et al. Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon Wea Rev, 2007, 135(6): 2392-2405. doi: 10.1175/MWR3404.1 [7] Trapp R J, Davies-Jones R. Tornadogenesis with and without a dynamic pipe effect. J Atmos Sci, 1997, 54(1): 113-133. doi: 10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2 [8] Trapp R J, Fiedler B Ⅱ. Tornado-like vortexgenesis in a simplified numerical model. J Atmos Sci, 1995, 52(21): 3757-3778. doi: 10.1175/1520-0469(1995)052<3757:TLVIAS>2.0.CO;2 [9] Markowski P M, Richardson Y P. The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J Atmos Sci, 2013, 71(1): 243-275. [10] Nowotarski C J, Markowski P M, Richardson Y P, et al. Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon Wea Rev, 2015, 143(1): 272-297. doi: 10.1175/MWR-D-14-00151.1 [11] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征. 气象, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htmFan W J, Yu X D. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm [12] 魏文秀, 赵亚民. 中国龙卷风的若干特征. 气象, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htmWei W X, Zhao Y M. The characteristics of tornadoes in China. Meteor Mon, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm [13] 高守亭, 左群杰, 杨帅. 龙卷生成动力学初探. 气象科技进展, 2018, 8(2): 24-35. doi: 10.3969/j.issn.2095-1973.2018.02.002Gao S T, Zou Q J, Yang S. A preliminary study on the dynamics of tornado formation. Adv Meteor Sci Tech, 2018, 8(2): 24-35. doi: 10.3969/j.issn.2095-1973.2018.02.002 [14] 郑永光. 中国龙卷气候特征和环境条件研究进展综述. 气象科技进展, 2020, 10(6): 69-75. doi: 10.3969/j.issn.2095-1973.2020.06.012Zheng Y G. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Tech, 2020, 10(6): 69-75. doi: 10.3969/j.issn.2095-1973.2020.06.012 [15] 周晓敏, 郑永光. 2020年梅雨期江苏两次龙卷过程环境背景和龙卷母风暴形态特征分析. 气象科技进展, 2020, 10(6): 34-42. doi: 10.3969/j.issn.2095-1973.2020.06.008Zhou X M, Zheng Y G. Analysis of environmental conditions and tornado storm features of two tornadoes in Jiangsu during the Meiyu period in 2020. Adv Meteor Sci Tech, 2020, 10(6): 34-42. doi: 10.3969/j.issn.2095-1973.2020.06.008 [16] 张玉洁, 苑文华, 徐百言. 江苏阜宁龙卷超级单体风暴的雷达资料分析. 干旱气象, 2019, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201903008.htmZhang Y J, Yuan W H, Xu B Y. Analysis of the tornado storm based on Doppler weather radar data in Funing. J Arid Meteor, 2019, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201903008.htm [17] 徐芬, 郑媛媛, 孙康远. 江苏龙卷时空分布及风暴形态特征. 气象, 2021, 47(5): 517-528. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202105001.htmXu F, Zheng Y Y, Sun K Y. Characteristics of spatio-temporal distribution and storm morphologies of tornadoes in Jiangsu Province. Meteor Mon, 2021, 47(5): 517-528. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202105001.htm [18] 周海光. "6·23"江苏阜宁EF4级龙卷超级单体风暴中尺度结构研究. 地球物理学报, 2018, 61(9): 3617-3639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809012.htmZhou H G. Observations of 23 June 2016 EF4 tornado supercell thunderstorm mesoscale structure in Funing County, Jiangsu Province. Chinese J Geophys, 2018, 61(9): 3617-3639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809012.htm [19] 姚叶青, 郝莹, 张义军, 等. 安徽龙卷发生的环境条件和临近预警. 高原气象, 2012, 31(6): 1721-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201206027.htmYao Y Q, Hao Y, Zhang Y J, et al. Synoptic situation and pre-warning of Anhui tornado. Plateau Meteor, 2012, 31(6): 1721-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201206027.htm [20] 王沛霖. 珠江三角洲春季龙卷发生的环境条件. 热带气象学报, 1996, 12(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX601.007.htmWang P L. On the environmental conditions for genesis of tornadoes in Zhujiang River Delta in Spring. J Trop Meteor, 1996, 12(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX601.007.htm [21] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风艾云尼龙卷分析. 气象学报, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htmHuang X X, Yu X D, Yan L J, et al. An analysis on tornadoes in Typhoon Ewiniar. Acta Meteor Sinica, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm [22] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比. 应用气象学报, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107 [23] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析. 应用气象学报, 2016, 27(3): 334-341. doi: 10.11898/1001-7313.20160308Chen Y Z, Yu X D, Chen X L, et al. A tornado in South China in May 2015. J Appl Meteor Sci, 2016, 27(3): 334-341. doi: 10.11898/1001-7313.20160308 [24] 黄先香, 俞小鼎, 炎利军, 等. 珠江三角洲台风龙卷的活动特征及环境条件分析. 气象, 2019, 45(6): 777-790. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201906004.htmHuang X X, Yu X D, Yan L J, et al. Analysis of typhoon-tornado activity characteristics and environmental condition in the Pearl River Delta. Meteor Mon, 2019, 45(6): 777-790. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201906004.htm [25] 黄先香, 俞小鼎, 炎利军, 等. 2019年4月13日广东徐闻强龙卷天气分析. 气象, 2021, 47(2): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102008.htmHuang X X, Yu X D, Yan L J, et al. Analysis of the 13 April 2019 strong tornado in Xuwen County, Guangdong Province. Meteor Mon, 2021, 47(2): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102008.htm [26] 林应, 王啸华, 顾沛澍, 等. 2016年夏季如东一次EF2级龙卷多普勒天气雷达特征分析. 气象科学, 2018, 38(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201803013.htmLin Y, Wang X H, Gu P S, et al. Analysis on the Doppler weather radar characteristics of EF2 tornado in Rudong during the summer 2016. J Meteor Sci, 2018, 38(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201803013.htm [27] 冯佳玮, 闵锦忠, 庄潇然. 中国龙卷时空分布及其环境物理量特征. 热带气象学报, 2017, 33(4): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201704010.htmFeng J W, Min J Z, Zhuang X R. The spatial and temporal distribution of Chinese tornados and their characteristics analysis of environmental physical variations. J Trop Meteor, 2017, 33(4): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201704010.htm [28] 王秀明, 俞小鼎, 周小刚. 中国东北龙卷研究: 环境特征分析. 气象学报, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htmWang X M, Yu X D, Zhou X G. Study of Northeast China tornadoes: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm [29] 朱红蕊, 张洪玲, 孙爽, 等. 1956—2011年黑龙江省龙卷风气候特征. 气象与环境学报, 2015, 31(3): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201503015.htmZhu H R, Zhang H L, Sun S, et al. Climate characteristics of tornado from 1956 to 2011 in Heilongjiang Province. J Meteor Environ, 2015, 31(3): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201503015.htm [30] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [31] 王宁, 王婷婷, 张硕, 等. 东北冷涡背景下一次龙卷过程的观测分析. 应用气象学报, 2014, 25(4): 463-469. doi: 10.3969/j.issn.1001-7313.2014.04.009Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the circulation background of northeast cold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. doi: 10.3969/j.issn.1001-7313.2014.04.009 [32] 王婷婷, 王宁, 姚瑶, 等. 东北冷涡背景下两类龙卷形成机制的对比分析. 气象与环境学报, 2017, 33(6): 9-15. doi: 10.3969/j.issn.1673-503X.2017.06.002Wang T T, Wang N, Yao Y, et al. Comparison analysis of formation mechanisms of two tornado cases under the background of Northeast cold vortex. J Meteor Environ, 2017, 33(6): 9-15. doi: 10.3969/j.issn.1673-503X.2017.06.002 [33] 张涛, 关良, 郑永光, 等. 2019年7月3日辽宁开原龙卷灾害现场调查及其所揭示的龙卷演变过程. 气象, 2020, 46(5): 603-617. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005002.htmZhang T, Guan L, Zheng Y G, et al. Damage survey of the 3 July 2019 Kaiyuan tornado in Liaoning Province and its evolution revealed by disaster. Meteor Mon, 2020, 46(5): 603-617. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005002.htm [34] 郑永光, 蓝渝, 曹艳察, 等. 2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理. 气象, 2020, 46(5): 589-602. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005001.htmZheng Y G, Lan Y, Cao Y C, et al. Environmental conditions, evolution and mechanisms of the EF4 tornado in Kaiyuan of Liaoning Province on 3 July 2019. Meteor Mon, 2020, 46(5): 589-602. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005001.htm [35] 袁潮, 王式功, 马湘宜, 等. 2019年7月3日开原龙卷形成环境背景及机理探究. 高原气象, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htmYuan C, Wang S G, Ma X Y, et al. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm [36] 阎琦, 张爱忠, 沈历都, 等. 2019年辽宁开原龙卷风观测事实分析. 灾害学, 2021, 36(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101022.htmYan Q, Zhang A Z, Shen L D, et al. Observational analysis of tornado in Kaiyuan of 2019. J Catastrophology, 2021, 36(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101022.htm [37] 高松影, 赵婷婷, 宋丽丽, 等. 影响东北的两个罕见气旋发展机制对比. 应用气象学报, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504 [38] Grams J S, Thompson R L, Snively V, et al. A climatology and comparison of parameters for significant tornado events in the United States. Wea Forecasting, 2012, 27: 106-123. doi: 10.1175/WAF-D-11-00008.1 [39] Davies-Jones R. Streamwise vorticity: The origin of updraft rotation in supercell storms. J Atmos Sci, 1984, 41(20): 2991-3006. doi: 10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2 [40] 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征. 应用气象学报, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304 [41] 王金兰, 俞小鼎, 汤兴芝, 等. 黄淮地区触发对流天气的干线特征. 应用气象学报, 2021, 32(5): 592-602. doi: 10.11898/1001-7313.20210507Wang J L, Yu X D, Tang X Z, et al. Characteristics of convective-traggering drylines in the drainage area of Huanghe and Huaihe Rivers. J Appl Meteor Sci, 2021, 32(5): 592-602. doi: 10.11898/1001-7313.20210507 [42] 杨伟, 方阳, 蒋帅, 等. 2017年8月13日东洞庭湖水龙卷特征. 应用气象学报, 2020, 31(3): 328-338. doi: 10.11898/1001-7313.20200307Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in east Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi: 10.11898/1001-7313.20200307 [43] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606