Refined Risk Assessment of Tropical Cyclone Disasters in Fujian
-
摘要: 根据1981—2021年福建省热带气旋风雨资料,采用极差标准化、相关系数客观赋权法和自然断点法建立热带气旋致灾因子危险性评估模型,评估结果表明:选择降水7个因子和大风4个因子作为评估指标体系合理;雨高危险性区域位于沿海,南平和三明地区雨危险性较低;风较高危险性区域明显窄于雨较高危险性区域,危险性等级向内陆降低远快于降水,其中罗源湾至崇武沿海因受台湾岛地形屏障保护,危险性比沿海南北部小1个等级;风雨综合致灾危险性,沿海县市皆为较高危险性区域,其中中部沿海高危险性区域小,沿海南北部大,另外登陆粤东热带气旋沿海北上滞留在闽西上空的低压云团造成闽西北部存在较高危险性区域;在热带气旋登陆影响过程中,精细化致灾因子危险性评估更具有针对性,且与灾情相符,为气象灾害决策服务提供了更有价值的参考信息。Abstract: Tropical cyclones have brought huge economic losses to Fujian Province. In order to achieve dynamic monitoring and early warning of wind and rain disaster risks caused by tropical cyclones, the disaster-causing mechanism of tropical cyclones is analyzed. A refined risk assessment method is developed to meet the needs of real-time decision-making on disaster prevention, mitigation, and reducing the economic losses caused by tropical cyclones.Through multiple rounds of rationality tests, 7 rain-induced disaster factors and 4 wind-induced disaster factors are picked out based on the tropical cyclone wind and rain data of 66 national meteorological stations from 1981 to 2021. And then, the risk assessment model of tropical cyclone disaster factors is established using the range standardization and correlation coefficient objective weighting method, and the risk level is divided by the natural breakpoint method and the disaster impacts.The results show that the risk assessment index system of disaster factors is reasonable, and the spatial distribution of disaster risk is investigated. The high rain risk areas are located along the coast, and the rain risk of Nanping and Sanming areas is low; the high wind risk area is significantly narrower than the high rain risk area, and the risk level decreases fast inland. Among them, the coastal areas from Luoyuan Bay to Chongwu are protected by the terrain barrier of Taiwan, and the risk is one level lower than that of the north and south parts of the coast. In addition, after the tropical cyclone lands on the east coast of Guangdong and moves northward, it often stays in the low-pressure cloud over the west of Fujian, resulting in a high risk area in the northwest of Fujian. Based on the spatial distribution of a single tropical cyclone, the disaster situation and the encrypted wind and rain data of regional stations, using the function of GIS and combining several typical tropical cyclone cases, a reasonable threshold for hazard classification is designed. It is targeted, especially urban waterlogging and mountain torrent disasters, which are basically consistent with the disaster situation, and provide more valuable reference information for meteorological disaster decision-making services.
-
Key words:
- tropical cyclone;
- hazard-inducing factors;
- precipitation;
- wind;
- risk assessment
-
表 1 热带气旋灾害致灾因子危险性评估指标体系
Table 1 Risk assessment index system of tropical cyclone disaster-causing factors
等级 降水因子 大风因子 第1级 雨危险性 风危险性 第2级(气象要素) 降水 风速 第3级(因子) 过程日最大降水量(单站), 过程累积最大降水量(单站), 过程1 h最大降水量, 过程3 h最大降水量, 过程暴雨站日数, 过程大暴雨站日数, 过程特大暴雨站日数 过程日最大风速(单站), 过程日极大风速(单站), 过程最大风速不低于8级站日数, 过程极大风速不低于12级站日数 表 2 县级尺度热带气旋灾害致灾因子危险性等级
Table 2 Risk assessment classification of disaster-causing factors for tropical cyclone disaster at county level
等级 含义 降水因子 大风因子 风雨综合因子 1 低危险 0~0.2060 0~0.0995 0~0.1255 2 较低危险 0.2061~0.2967 0.0996~0.1954 0.1256~0.2158 3 中等危险 0.2968~0.4017 0.1955~0.2853 0.2159~0.3209 4 较高危险 0.4018~0.5230 0.2854~0.4495 0.3210~0.4490 5 高危险 0.5231~1 0.4496~1 0.4491~1 表 3 乡镇级尺度热带气旋灾害致灾因子危险性等级
Table 3 Risk assessment classification of disaster-causing factors for tropial cyclone disaster at township level
等级 含义 降水因子 大风因子 风雨综合因子 1 低危险 0~0.2252 0~0.2124 0~0.1051 2 较低危险 0.2253~0.3206 0.2125~0.2767 0.1052~0.2041 3 中等危险 0.3207~0.4312 0.2768~0.3300 0.2042~0.2917 4 较高危险 0.4313~0.5413 0.3301~0.4039 0.2918~0.4078 5 高危险 0.5414~1 0.4040~1 0.4079~1 -
[1] 陈香.沿海地区台风灾害系统脆弱性过程诊断与评估——以福建省为例.灾害学, 2007, 22(3):6-10. doi: 10.3969/j.issn.1000-811X.2007.03.002Chen X. Vulnerability diagnosis and assessment of typhoon disaster system at coastal regions, a case study of Fujian Province. J Catastrophology, 2007, 22(3): 6-10. doi: 10.3969/j.issn.1000-811X.2007.03.002 [2] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoon. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103 [3] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [4] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征. 应用气象学报, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scaled circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306 [5] Dilley M, Chen R S, Deichmann U, et al. Natural Disaster Hot- spots: A Risk Analysis Synthesis Report. Washington DC: Hazard Management Unit, World Bank, 2005: 1-132. [6] 魏章进, 隋广军, 唐丹玲. 台风灾情评估及方法综述. 灾害学, 2012, 27(4): 107-113. doi: 10.3969/j.issn.1000-811X.2012.04.023Wei Z J, Sui G J, Tang D L. An Overview of assessment and approaches on typhoon disaster. J Catastrophology, 2012, 27(4): 107-113. doi: 10.3969/j.issn.1000-811X.2012.04.023 [7] 殷洁, 戴尔阜, 吴绍洪. 中国台风灾害综合风险评估与区划. 地理科学, 2013, 33(11): 1370-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201311012.htmYin J, Dai E F, Wu S H. Integrated risk assessment and zoning of typhoon disaster in China. Sci Geogr Sinica, 2013, 33(11): 1370-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201311012.htm [8] 韩金, 戴尔阜. 基于系统动力学的台风减灾决策研究. 灾害学, 2021, 36(2): 220-227;234. doi: 10.3969/j.issn.1000-811X.2021.02.038Han J, Dai E F. System-dynamics-based disaster reduction decision for typhoon disaster. J Catastrophology, 2021, 36(2): 220-227;234. doi: 10.3969/j.issn.1000-811X.2021.02.038 [9] 叶丁嘉, 王国复, 尹宜舟, 等. 基于灰色关联法的县域台风灾情评估方法初探. 海洋气象学报, 2019, 39(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201901007.htmYe D J, Wang G F, Yin Y Z, et al. Study on typhoon disaster assessment at county level based on grey relational analysis. J Marine Meteor, 2019, 39(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201901007.htm [10] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [11] 陈有利, 朱宪春, 胡波, 等. 基于BP神经网络的宁波市台风灾情预估模型研究. 大气科学学报, 2018, 41(5): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201805010.htmChen Y L, Zhu X C, Hu B, et al. Investigate on the pre-assessment of typhoon disaster in Ningbo based on BP neural network. Trans Atmos Sci, 2018, 41(5): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201805010.htm [12] Tan R P, Zhang W D. Multiple attribute decision making method based on DEMATEL and fuzzy distance of trapezoidal fuzzy neutrosophic numbers and its application in typhoon disaster evaluation. J Intell Fuzzy Syst, 2020, 39(3): 3413-3439. doi: 10.3233/JIFS-191758 [13] 张容焱, 徐宗焕, 游立军, 等. 福建热带气旋风雨空间分布特征及风险评估. 应用气象学报, 2012, 23(6): 672-682. doi: 10.3969/j.issn.1001-7313.2012.06.004Zhang R Y, Xu Z H, You L J, et al. Wind and rainfall features and risk assessment of tropical cyclone in Fujian. J Appl Meteor Sci, 2012, 23(6): 672-682. doi: 10.3969/j.issn.1001-7313.2012.06.004 [14] 陈楷俊, 陈艺仪, 陈菁. 近30年粤东地区台风灾害风险评估与分析. 水土保持研究, 2019, 26(3): 362-366;372. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201903056.htmChen K J, Chen Y Y, Chen J. Risk assessment and analysis of typhoon disaster in east Guangdong in the period 1989-2017. Res Soil Water Conserv, 2019, 26(3): 362-366;372. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201903056.htm [15] 孔莉莎, 张秀芝. 西北太平洋历史台风风场重建模型参数试验. 应用气象学报, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105Kong L S, Zhang X Z. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105 [16] 朱婧, 陆逸, 李国平, 等. 基于县级分辨率的福建省台风灾害风险评估. 灾害学, 2017, 32(3): 204-209. doi: 10.3969/j.issn.1000-811X.2017.03.034Zhu J, Lu Y, Li G P, et al. Risk assessment of typhoon disaster in Fujian Provice of each country. J Catastrophology, 2017, 32(3): 204-209. doi: 10.3969/j.issn.1000-811X.2017.03.034 [17] 林茹馨, 叶金玉. 中国台风研究进展的可视化分析. 防灾科技学院学报, 2020, 22(1): 38-45. doi: 10.3969/j.issn.1673-8047.2020.01.006Lin R X, Ye J Y. Visualization analysis of the typhoon researches in China. Journal of Institute of Disaster Prevention, 2020, 22(1): 38-45. doi: 10.3969/j.issn.1673-8047.2020.01.006 [18] 张悦, 李珊珊, 陈灏, 等. 广东省台风灾害风险综合评估. 热带气象学报, 2017, 33(2): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201702015.htmZhang Y, Li S S, Chen H, et al. Evaluation of typhoon disaster risk in Guangdong Province. J Trop Meteor, 2017, 33(2): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201702015.htm [19] 于小兵, 俞显瑞, 吉中会, 等. 基于信息扩散的东南沿海台风灾害风险评估. 灾害学, 2019, 34(1): 73-77. doi: 10.3969/j.issn.1000-811X.2019.01.015Yu X B, Yu X R, Ji Z H, et al. Risk assessment and analysis of typhoon disaster in China's south-east coastal areas-based on information diffusion theory. J Catastrophology, 2019, 34(1): 73-77. doi: 10.3969/j.issn.1000-811X.2019.01.015 [20] 刘合香, 卢耀健, 王萌, 等. 基于信息扩散技术的华南极端台风灾害风险评估. 热带海洋学报, 2020, 39(3): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202003004.htmLiu H X, Lu Y J, Wang M, et al. Risk assessment of extreme typhoon disasters based on information diffusion technology. J Trop Ocean, 2020, 39(3): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202003004.htm [21] 周亚飞, 程霄楠, 蔡靖, 等. 台风灾害综合风险评价研究. 中国公共安全(学术版), 2013(1): 31-37. doi: 10.3969/j.issn.1672-2396.2013.01.008Zhou Y F, Cheng X N, Cai J, et al. Study on comprehensive risk assessment of typhoon disasters. China Public Security(Academy Editon), 2013(1): 31-37. doi: 10.3969/j.issn.1672-2396.2013.01.008 [22] 李祚泳, 徐源蔚, 汪嘉杨, 等. 基于投影寻踪回归的规范指标的气象灾情评估. 应用气象学报, 2016, 27(4): 480-487. doi: 10.11898/1001-7313.20160411Li Z Y, Xu Y W, Wang J Y, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression. J Appl Meteor Sci, 2016, 27(4): 480-487. doi: 10.11898/1001-7313.20160411 [23] 杨挺, 端义宏, 徐晶, 等. 城市效应对登陆热带气旋妮妲降水影响的模拟. 应用气象学报, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403Yang T, Duan Y H, Xu J, et al. Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403 [24] 张永恒, 范广洲, 马清云, 等. 浙江省台风灾害影响评估模型. 应用气象学报, 2009, 20(6): 772-776. doi: 10.3969/j.issn.1001-7313.2009.06.017Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi: 10.3969/j.issn.1001-7313.2009.06.017 [25] 魏章进, 马华铃, 唐丹玲. 基于改进熵值法的台风灾害风险趋势评估. 灾害学, 2017, 32(3): 7-11. doi: 10.3969/j.issn.1000-811X.2017.03.002Wei Z J, Ma H L, Tang D L. Trend assessment of typhoon disasters based on the improved entropy method. J Catastrophology, 2017, 32(3): 7-11. doi: 10.3969/j.issn.1000-811X.2017.03.002 [26] 卢耀健, 刘合香, 王萌. 基于组合权重和模糊随机方法的台风灾害风险评估. 模糊系统与数学, 2020, 34(2): 151-163. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE202002017.htmLu Y J, Liu H X, Wang M. Typhoon disaster risk assessment based on combined weights and fuzzy stochastic methods. Fuzzy Systems and Mathematicis, 2020, 34(2): 151-163. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE202002017.htm [27] 许红师, 练继建, 宾零陵, 等. 台风灾害多元致灾因子联合分布研究. 地理科学, 2018, 38(12): 2118-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201812021.htmXu H S, Lian J J, Bin L L, et al. Joint distributionof multiple typhoon hazard factors. Sci Geogr Sinica, 2018, 38(12): 2118-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201812021.htm [28] 牛海燕, 刘敏, 陆敏, 等. 中国沿海地区台风致灾因子危险性评估. 华东师范大学学报(自然科学版), 2011, 31(6): 20-25;35. doi: 10.3969/j.issn.1000-5641.2011.06.003Niu H Y, Liu M, Lu M, et al. Risk assessment of typhoon hazard factors in China coastal areas during last 20 years. Journal of East China Normal University(Nat Sci Ed), 2011, 31(6): 20-25;35. doi: 10.3969/j.issn.1000-5641.2011.06.003 [29] 刘方田, 许尔琪. 海南省台风特点与灾情评估时空关联分析. 灾害学, 2020, 35(2): 217-223. doi: 10.3969/j.issn.1000-811X.2020.02.039Liu F T, Xu E Q. Spatio-temporal correlation analysis of typhoon characteristics and disaster assessment in Hainan Province. J Catastrophology, 2020, 35(2): 217-223. doi: 10.3969/j.issn.1000-811X.2020.02.039 [30] 张忠伟, 张京红, 赵志忠, 等. 基于GIS的海南岛台风灾害致灾因子危险性分析. 安徽农业科学, 2011, 39(11): 6587-6590. doi: 10.3969/j.issn.0517-6611.2011.11.112Zhang Z W, Zhang J H, Zhao Z Z, et al. Analysis of risks in Hainan Island typhoon hazard factor based on GIS. J Anhui Agri Sci, 2011, 39(11): 6587-6590. doi: 10.3969/j.issn.0517-6611.2011.11.112 [31] 巩在武, 胡丽. 台风灾害评估中的影响因子分析. 自然灾害学报, 2015, 24(1): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201501026.htmGong Z W, Hu L. Influence factor analysis of typhoon disaster assessment. J Nat Disa, 2015, 24(1): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201501026.htm [32] 张丽佳, 刘敏, 陆敏, 等. 中国东南沿海地区台风危险性评价. 人民长江, 2010, 41(6): 81-83;91. doi: 10.3969/j.issn.1001-4179.2010.06.021Zhang L J, Liu M, Lu M, et al. The hazard assessment of typhoon in southeast coastal areas of China. Yangtze River, 2010, 41(6): 81-83;91. doi: 10.3969/j.issn.1001-4179.2010.06.021 [33] Blaikie P, Cannon T, Davis I, et al. At Risk: Natural Hazard, People's Vulnerability and Disasters. London: Routledgei, 1994: 1-210. [34] 李柏年. 模糊数学及其应用. 合肥: 合肥工业大学出版社, 2007.Li B N. Fuzzy Mathematics and Application. Hefei: Hefei University of Technology Press, 2007. [35] 蔡一乐, 曹诗颂, 杜明义, 等. 中国地级市人为热总量的估算及驱动因素分析. 地球信息科学学报, 2021, 23(3): 405-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202103006.htmCai Y L, Cao S S, Du M Y, et al. Estimation and analysis of driving factors of total AHF in prefecture-level of China. J Geo-info Sci, 2021, 23(3): 405-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202103006.htm [36] 林蓉璇, 王鑫. 基于ArcGIS对广东省暴雨洪涝灾害风险的初步研究. 广东水利水电, 2016(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201605011.htmLin R X, Wang X. Preliminary study about Guangdong flood disaster risk based on ArcGIS. Guangdong Water Resources and Hydropower, 2016(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201605011.htm [37] 郑新江, 卢乃锰, 罗敬宁, 等. "96.8.8"福建成灾暴雨水汽图像特征分析. 海洋预报, 1997, 14(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB704.006.htmZheng X J, Lu N M, Luo J N, et al. Analysis of the characteristics of water vapor image of rainstorm in Fujian Province on 8 August 1996. Marine Forecasts, 1997, 14(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB704.006.htm