留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工引雷的粤港澳闪电定位系统性能评估

张悦 吕伟涛 陈绿文 武斌 齐奇 马颖 张阳 郑栋 颜旭 孟青

张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. DOI:  10.11898/1001-7313.20220307..
引用本文: 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. DOI:  10.11898/1001-7313.20220307.
Zhang Yue, Lü Weitao, Chen Lüwen, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. DOI:  10.11898/1001-7313.20220307.
Citation: Zhang Yue, Lü Weitao, Chen Lüwen, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. DOI:  10.11898/1001-7313.20220307.

基于人工引雷的粤港澳闪电定位系统性能评估

DOI: 10.11898/1001-7313.20220307
资助项目: 

国家重点研发计划 2017YFC1501504

国家自然科学基金项目 42175108

中国气象科学研究院基本科研业务费专项 2021Z011

中国铁道科学研究院集团有限公司院基金课题 2020YJ171

详细信息
    通信作者:

    吕伟涛,邮箱:wtlu@ustc.edu

Evaluation of GHMLLS Performance Characteristics Based on Observations of Artificially Triggered Lightning

  • 摘要: 利用2014—2019年中国气象局雷电野外科学试验基地广州从化人工触发闪电试验所获资料,评估粤港澳闪电定位系统(Guangdong-Hongkong-Macau Lightning Location System,GHMLLS)性能,结果表明:GHMLLS对人工触发闪电和回击的探测效率分别为96%(48/50)和88%(233/265),回击位置定位误差的算术平均值、几何平均值和中值分别为279 m,193 m和202 m。对于触发闪电的回击过程,GHMLLS探测的回击电流峰值(ILLS)全部偏低,与通道底部雷电流峰值的直接测量结果(IDM)相比,ILLS的相对偏差平均值(中值)为-37%(-36%),但ILLSIDM相关系数为0.93,存在显著正相关关系(达到0.01显著性水平);截距为0的线性拟合结果表明ILLSIDM存在65%的比例关系,利用该系数校正ILLS,结果的相对偏差绝对值的平均值(中值)为15%(12%)。GHMLLS有对应定位记录的233次触发闪电回击中,16次定位结果为云闪,判别正确率为93%。被误判为云闪的回击的IDM更低,可用于定位的站点数量更少,定位误差更大,ILLS的精度更低。
  • 图  1  GHMLLS探测子站分布及人工触发闪电试验场位置

    Fig. 1  Distribution of sensors in GHMLLS and experiment site for artificially triggered lightning

    图  2  50次人工触发闪电回击数量(a)和回击间时间间隔(b)

    Fig. 2  Number of return strokes in 50 artificially triggered lightning flashes(a) and time interval between return strokes(b)

    图  3  50次人工触发闪电中265次回击的IDM分布(a)和GHMLLS在各区间回击的探测效率(b)

    Fig. 3  Distribution of IDM of 265 return strokes in 50 artificially triggered lightning flashes(a) and corresponding GHMLLS detection efficiency(b)

    图  4  GHMLLS探测子站和2014—2019年265次人工触发闪电回击定位位置分布及各方向定位误差箱线图

    (N为样本量,+为异常值,下同)

    Fig. 4  Location of GHMLLS sensors and reported locations for 265 return strokes in artificially triggered lightning and box plot of location errors in four directions during 2014-2019

    (N denotes sample size, + denotes outliers, the same hereinafter)

    图  5  2014—2019年GHMLLS对人工触发闪电回击的定位误差与探测站点数关系散点图(a)和箱线图(b)

    Fig. 5  Scatter plot(a) and box plot(b) of relationship between the location error of GHMLLS for return strokes in artificially triggered lightningand number of reporting sensors during 2014-2019

    图  6  2014—2019年GHMLLS对人工触发闪电回击事件定位误差与IDM关系

    (黑色小矩形表示仅有1个样本的类别)

    Fig. 6  Box plot of relationship between the location error and IDM during 2014-2019

    (the small black rectangle denotes the category with only one sample)

    图  7  2014—2019年人工触发闪电回击事件电流峰值的GHMLLS反演结果ILLS和直接测量值IDM对比

    Fig. 7  Scatter plot of relationship between LLS-inferred peak current of GHMLLS(ILLS) anddirect measurement peak current(IDM) during 2014-2019

    图  8  2014—2019年GHMLLS对人工触发闪电回击的ILLS校正后的相对偏差与IDM关系

    (黑色小矩形表示仅有1个样本的类别)

    Fig. 8  Box plot of relationship between the error of ILLS of GHMLLS after correction and IDM during 2014-2019

    (the small black rectangle denotes the category with only one sample)

    表  1  2014—2019年GHMLLS对人工触发闪电的探测

    Table  1  GHMLLS detection of flashes and return strokes in artificially triggered lightning experiment during 2014-2019

    年份 人工触发闪电 GHMLLS探测 GHMLLS探测效率/%
    闪电数量 回击数量 闪电数量 LLS-CG数量 LLS-IC数量 闪电 回击
    2014 7 34 6 28 0 86 82
    2015 13 80 12 62 3 92 81
    2016 3 14 3 8 0 100 57
    2017 7 38 7 26 9 100 92
    2018 6 27 6 27 0 100 100
    2019 14 72 14 66 4 100 97
    下载: 导出CSV

    表  2  2014—2019年GHMLLS对人工触发闪电回击的云闪/地闪判别正确率

    Table  2  Classification accuracy of cloud-to-ground and intra-cloud lightning detected by GHMLLS for return strokes in artificially triggered lightning during 2014-2019

    年份 LLS-CG数量 LLS-IC数量 回击判别正确率/%
    2014 28 0 100
    2015 62 3 95
    2016 8 0 100
    2017 26 9 74
    2018 27 0 100
    2019 66 4 94
    下载: 导出CSV

    表  3  2014—2019年人工触发闪电回击的LLS-CG和LLS-IC特征

    Table  3  Characteristic statistics of return strokes in artificially triggered lightning of LLS-CG and LLS-IC from 2014 to 2019

    统计量 LLS-CG LLS-IC
    平均值 中值 平均值 中值
    IDM/kA 16.5 14.9 11.7 9.9
    ILLS/kA 10.6 9.4 7.0 5.7
    ILLS的相对偏差/% -36.7 -35.8 -40.8 -39.2
    定位站点数量 8.1 7 5.4 5
    定位误差/m 260 193 538 270
    下载: 导出CSV
  • [1] 田野, 姚雯, 尹佳莉, 等.不同闪电跃增算法在北京地区应用效果对比.应用气象学报, 2021, 32(2):217-232. doi:  10.11898/1001-7313.20210207

    Tian Y, Yao W, Yin J L, et al. Comparison of the performance of different lightning jump algorithms in Beijing. J Appl Meteor Sci, 2021, 32(2): 217-232. doi:  10.11898/1001-7313.20210207
    [2] 赵伟, 姜瑜君, 童杭伟, 等. 浙江省两套闪电定位系统地闪数据对比. 应用气象学报, 2015, 26(3): 354-363. doi:  10.11898/1001-7313.20150311

    Zhao W, Jiang Y J, Tong H W, et al. Comparative analysis of the cloud-to-ground lightning data between two lightning location systems. J Appl Meteor Sci, 2015, 26(3): 354-363. doi:  10.11898/1001-7313.20150311
    [3] 张义军, 孟青, 马明, 等. 闪电探测技术发展和资料应用. 应用气象学报, 2006, 17(5): 611-620. doi:  10.3969/j.issn.1001-7313.2006.05.011

    Zhang Y J, Meng Q, Ma M, et al. Development of lightning detection technique with application of lightning data. J Appl Meteor Sci, 2006, 17(5): 611-620. doi:  10.3969/j.issn.1001-7313.2006.05.011
    [4] Orville R E. An analytical solution to obtain the optimum source location using multiple direction finders on a spherical surface. J Geophys Res Atmos, 1987, 92(D9): 10877-10886. doi:  10.1029/JD092iD09p10877
    [5] 陈明理, 刘欣生, 郭昌明, 等. 确定雷电定位系统场地误差的参数化方法. 高原气象, 1990, 9(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199003007.htm

    Chen M L, Liu X S, Guo C M, et al. A parameterization method of the site errors estimation of lightning location system. Plateau Meteor, 1990, 9(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199003007.htm
    [6] Brundell J B, Rodger C J, Dowden R L. Validation of single-station lightning location technique. Radio Science, 2002, 37(4): 11-12.
    [7] Berger G, Pedeboy S. Comparison Between Real CG Flashes And CG Flashes Detected by A Lightning Detection Network. International Conference on Lightning and Static Electricity(ICOLSE), Blackpool, UK, 2003.
    [8] Jerauld J, Rakov V A, Uman M A, et al. An evaluation of the performance characteristics of the US National Lightning Detection Network in Florida using rocket-triggered lightning. J Geophys Res Atmos, 2005, 110(D19): 1-16.
    [9] Nag A, Mallick S, Rakov V A, et al. Evaluation of US National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004-2009. J Geophys Res Atmos, 2011, 116(D2): 1-8.
    [10] Pohjola H, Mäkelä A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos Res, 2013, 123: 117-128. doi:  10.1016/j.atmosres.2012.10.019
    [11] Zhang Y J, Lu W T, Chen L W, et al. Performance Characteristics of the Lightning Location System of Guangdong-Hongkong-Macau after the Upgrade in 2012.24th International Lightning Detection Conference, San Diego, Califonia, USA, 2016.
    [12] Schulz W, Diendorfer G, Pedeboy S, et al. The European lightning location system EUCLID-Part 1: Performance analysis and validation. Nat Hazards and Earth Syst Sci, 2016, 16(2): 595-605. doi:  10.5194/nhess-16-595-2016
    [13] 张义军, 杨少杰, 吕伟涛, 等. 2006—2011年广州人工触发闪电观测试验和应用. 应用气象学报, 2012, 23(5): 513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001

    Zhang Y J, Yang S J, Lü W T, et al. Comprehensive observation experiments and application study of artificially triggered lightning during 2006-2011. J Appl Meteor Sci, 2012, 23(5): 513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [14] 肖桐, 张阳, 吕伟涛, 等. 人工触发闪电M分量的电流与电磁场特征. 应用气象学报, 2013, 24(4): 446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007

    Xiao T, Zhang Y, Lü W T. Current and electromagnetic field of M component in triggered lightning. J Appl Meteor Sci, 2013, 24(4): 446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007
    [15] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展. 气象学报, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htm

    Zhang Y J, Lv W T, Chen S D, et al. A review of lightning observation experiments during the last ten years in Guangdong. Acta Meteor Sinica, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htm
    [16] Rakov V A, Uman M A. Lightning: Physics And Effects //Cambridgeshire: Cambridge University Press, 2003.
    [17] 张义军, 张阳, 郑栋, 等. 2008-2014年广东人工触发闪电电流特征. 高电压技术, 2016, 42(11): 3404-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611006.htm

    Zhang Y J, Zhang Y, Zheng D, et al. Current Characteristics of triggered lightnings in Guangdong from 2008 to 2014. High Voltage Engineering, 2016, 42(11): 3404-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611006.htm
    [18] 王敬轩, 张阳, 陈泽方, 等. 人工触发闪电不同放电阶段电流特征关系. 应用气象学报, 2020, 31(2): 224-235. doi:  10.11898/1001-7313.20200209

    Wang J X, Zhang Y, Chen Z F, et al. Relationship between current characteristics of rocket-triggered lightning during different discharge stages. J Appl Meteor Sci, 2020, 31(2): 224-235. doi:  10.11898/1001-7313.20200209
    [19] 钱勇, 张阳, 张义军, 等. 人工触发闪电先驱电流脉冲波形特征及模拟. 应用气象学报, 2016, 27(6): 716-724. doi:  10.11898/1001-7313.20160608

    Qian Y, Zhang Y, Zhang Y J, et al. Characteristics and simulation of artificially triggered lightning precursor current pulse. J Appl Meteor Sci, 2016, 27(6): 716-724. doi:  10.11898/1001-7313.20160608
    [20] 曹雪芬, 张源源, 刘三梅, 等. 闪电定位真实地表修订算法的检验评估. 广东气象, 2021, 43(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202103014.htm

    Cao X F, Zhang Y Y, Liu S M, et al. Evaluation of real surface revision algorithm for lightning location. Guangdong Meteor, 2021, 43(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202103014.htm
    [21] 陈绿文, 张义军, 吕伟涛, 等. 闪电定位资料与人工引雷观测结果的对比分析. 高电压技术, 2009, 35(8): 1896-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200908023.htm

    Chen L W, Zhang Y J, Lü W T, et al. Comparative analysis between LLS and observation of artificial triggered lightning. High Voltage Engineering, 2009, 35(8): 1896-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200908023.htm
    [22] Chen L W, Zhang Y J, Lu W T, et al. Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J Atmos Oceanic Technol, 2012, 29(12): 1835-1844. doi:  10.1175/JTECH-D-12-00028.1
    [23] 禹继, 杨仲江, 陈绿文, 等. 粤港澳闪电定位系统探测效率及精确度评估. 高原气象, 2015, 34(3): 863-869. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503029.htm

    Yu J, Yang Z J, Chen L W, et al. Evaluation of detection efficiency and accuracy of lightning location system of Guangdong-Hongkong-Macau. Plateau Meteor, 2015, 34(3): 863-869. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503029.htm
    [24] Zhu Y, Rakov V A, Tran M D, et al. Evaluation of ENTLN performance characteristics based on the ground truth natural and rocket-triggered lightning data acquired in Florida. J Geophys Res Atmos, 2017, 122(18): 9858-9866. doi:  10.1002/2017JD027270
    [25] Li Q X, Wang J G, Cai L, et al. On the return-stroke current estimation of Foshan Total Lightning Location System(FTLLS). Atmos Res, 2021, 248: 1-9.
    [26] 陈绿文, 吕伟涛, 张义军, 等. 粤港澳闪电定位系统对高建筑物雷电的探测. 应用气象学报, 2020, 31(2): 165-174. doi:  10.11898/1001-7313.20200204

    Chen L W, Lü W T, Zhang Y J, et al. Detection results of Guangdong-Hongkong-Macao lightning location system for tall-object lightning. J Appl Meteor Sci, 2020, 31(2): 165-174. doi:  10.11898/1001-7313.20200204
    [27] 郭宏博, 邱宗旭, 杨悦新, 等. 粤港澳闪电定位系统与深圳高塔雷电光学观测对比分析. 广东气象, 2017, 39(6): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201706017.htm

    Guo H B, Qiu Z X, Yang Y X, et al. Comparative analysis of Guangdong-Hongkong-Macao lightning location system and lightning optical observation of the high tower in Shenzhen. Guangdong Meteor, 2017, 39(6): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201706017.htm
    [28] 陈绿文, 黄智慧, 禹继, 等. 一次人工触发闪电事件的定位误差分析. 广东气象, 2010, 32(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201001007.htm

    Chen L W, Huang Z H, Yu J, et al. Location error analysis of a triggered lightning flash. Guangdong Meteor, 2010, 32(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201001007.htm
    [29] 樊艳峰, 陆高鹏, 张阳, 等. 人工触发闪电初始连续电流的中低频磁场特征. 应用气象学报, 2020, 31(2): 213-223. doi:  10.11898/1001-7313.20200208

    Fan Y F, Lu G P, Zhang Y, et al. Characteristics of medium-low frequency magnetic fields of initial continuous current in rocket-triggered lightning. J Appl Meteor Sci, 2020, 31(2): 213-223. doi:  10.11898/1001-7313.20200208
    [30] 张悦, 吕伟涛, 陈绿文, 等. 粤港澳大湾区两套闪电定位系统地闪探测性能的对比分析. 热带气象学报, 2021, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202103013.htm

    Zhang Y, Lyu W T, Chen L W, et al. The comparative analysis of detection of cloud-to-ground lightning of two lightning location systems in Guangdong-Hongkong-Macao Greater Bay Area. J Trop Meteor, 2021, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202103013.htm
  • 加载中
图(8) / 表(3)
计量
  • 摘要浏览量:  872
  • HTML全文浏览量:  123
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-03-28
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回