Evaluation of GHMLLS Performance Characteristics Based on Observations of Artificially Triggered Lightning
-
摘要: 利用2014—2019年中国气象局雷电野外科学试验基地广州从化人工触发闪电试验所获资料,评估粤港澳闪电定位系统(Guangdong-Hongkong-Macau Lightning Location System,GHMLLS)性能,结果表明:GHMLLS对人工触发闪电和回击的探测效率分别为96%(48/50)和88%(233/265),回击位置定位误差的算术平均值、几何平均值和中值分别为279 m,193 m和202 m。对于触发闪电的回击过程,GHMLLS探测的回击电流峰值(ILLS)全部偏低,与通道底部雷电流峰值的直接测量结果(IDM)相比,ILLS的相对偏差平均值(中值)为-37%(-36%),但ILLS和IDM相关系数为0.93,存在显著正相关关系(达到0.01显著性水平);截距为0的线性拟合结果表明ILLS与IDM存在65%的比例关系,利用该系数校正ILLS,结果的相对偏差绝对值的平均值(中值)为15%(12%)。GHMLLS有对应定位记录的233次触发闪电回击中,16次定位结果为云闪,判别正确率为93%。被误判为云闪的回击的IDM更低,可用于定位的站点数量更少,定位误差更大,ILLS的精度更低。Abstract: Artificially triggered lightning refers to the lightning that is artificially triggered to the ground under appropriate thunderstorm conditions. The location of artificially triggered lightning can be determined; the occurring time can be precisely stamped, and the channel-base current can be measured directly. Therefore, it's one of the effective methods to evaluate the performance of lightning location system (LLS). From the observations of artificially triggered lightning experiment conducted at the Field Experiment Base on Lightning Sciences, China Meteorological Administration from 2014 to 2019, 50 lightning flashes are selected to evaluate and analyze the performance characteristics of Guangdong-Hongkong-Macau Lightning Location System (GHMLLS).The results show that the lightning detection efficiency and stroke detection efficiency are about 96% (48/50) and 88% (233/265), respectively. The arithmetic mean, geometric mean and median values of location error are 279 m, 193 m and 202 m, respectively. The results show that there is a systematic deviation to the southwest in GHMLLS observations around the triggered lightning experiment site, which is about 170 m to the west and 50 m to the south. After correction, the arithmetic mean, geometric mean and median values of location error are reduced to 198 m, 108 m and 103 m, respectively. The linear fitting result with intercept of 0 shows that the LLS-inferred peak current of GHMLLS is about 65% of the direct measurement value of the channel-base current. Meanwhile, the arithmetic mean (median) value of the LLS-inferred peak current error is -37% (-36%). However, there is a strong positive correlation and the correlation coefficient is 0.93. The arithmetic mean (median) value of the absolute value of the LLS-inferred peak current error is reduced to 15% (12%) when the ratio of 65% is used to correct them. Among 233 return strokes of triggered lightning flashes, 16 return strokes are mistakenly classified as intra-cloud lightning, so the return stroke classification accuracy of GHMLLS is 93%. The peak currents of these mistakenly classified return strokes are lower, the stations available for locating are fewer, and the errors of location and LLS-inferred peak current are larger.In conclusion, GHMLLS have good detection efficiency and location accuracy. The return stroke classification accuracy of GHMLLS is at a high level as well. Nevertheless, there is an obvious systematic deviation in the LLS-inferred peak current of GHMLLS. In order to obtain more reliable analysis results, it's recommended to divide it by 0.65 when using the LLS-inferred peak current of GHMLLS.
-
图 4 GHMLLS探测子站和2014—2019年265次人工触发闪电回击定位位置分布及各方向定位误差箱线图
(N为样本量,+为异常值,下同)
Fig. 4 Location of GHMLLS sensors and reported locations for 265 return strokes in artificially triggered lightning and box plot of location errors in four directions during 2014-2019
(N denotes sample size, + denotes outliers, the same hereinafter)
表 1 2014—2019年GHMLLS对人工触发闪电的探测
Table 1 GHMLLS detection of flashes and return strokes in artificially triggered lightning experiment during 2014-2019
年份 人工触发闪电 GHMLLS探测 GHMLLS探测效率/% 闪电数量 回击数量 闪电数量 LLS-CG数量 LLS-IC数量 闪电 回击 2014 7 34 6 28 0 86 82 2015 13 80 12 62 3 92 81 2016 3 14 3 8 0 100 57 2017 7 38 7 26 9 100 92 2018 6 27 6 27 0 100 100 2019 14 72 14 66 4 100 97 表 2 2014—2019年GHMLLS对人工触发闪电回击的云闪/地闪判别正确率
Table 2 Classification accuracy of cloud-to-ground and intra-cloud lightning detected by GHMLLS for return strokes in artificially triggered lightning during 2014-2019
年份 LLS-CG数量 LLS-IC数量 回击判别正确率/% 2014 28 0 100 2015 62 3 95 2016 8 0 100 2017 26 9 74 2018 27 0 100 2019 66 4 94 表 3 2014—2019年人工触发闪电回击的LLS-CG和LLS-IC特征
Table 3 Characteristic statistics of return strokes in artificially triggered lightning of LLS-CG and LLS-IC from 2014 to 2019
统计量 LLS-CG LLS-IC 平均值 中值 平均值 中值 IDM/kA 16.5 14.9 11.7 9.9 ILLS/kA 10.6 9.4 7.0 5.7 ILLS的相对偏差/% -36.7 -35.8 -40.8 -39.2 定位站点数量 8.1 7 5.4 5 定位误差/m 260 193 538 270 -
[1] 田野, 姚雯, 尹佳莉, 等.不同闪电跃增算法在北京地区应用效果对比.应用气象学报, 2021, 32(2):217-232. doi: 10.11898/1001-7313.20210207Tian Y, Yao W, Yin J L, et al. Comparison of the performance of different lightning jump algorithms in Beijing. J Appl Meteor Sci, 2021, 32(2): 217-232. doi: 10.11898/1001-7313.20210207 [2] 赵伟, 姜瑜君, 童杭伟, 等. 浙江省两套闪电定位系统地闪数据对比. 应用气象学报, 2015, 26(3): 354-363. doi: 10.11898/1001-7313.20150311Zhao W, Jiang Y J, Tong H W, et al. Comparative analysis of the cloud-to-ground lightning data between two lightning location systems. J Appl Meteor Sci, 2015, 26(3): 354-363. doi: 10.11898/1001-7313.20150311 [3] 张义军, 孟青, 马明, 等. 闪电探测技术发展和资料应用. 应用气象学报, 2006, 17(5): 611-620. doi: 10.3969/j.issn.1001-7313.2006.05.011Zhang Y J, Meng Q, Ma M, et al. Development of lightning detection technique with application of lightning data. J Appl Meteor Sci, 2006, 17(5): 611-620. doi: 10.3969/j.issn.1001-7313.2006.05.011 [4] Orville R E. An analytical solution to obtain the optimum source location using multiple direction finders on a spherical surface. J Geophys Res Atmos, 1987, 92(D9): 10877-10886. doi: 10.1029/JD092iD09p10877 [5] 陈明理, 刘欣生, 郭昌明, 等. 确定雷电定位系统场地误差的参数化方法. 高原气象, 1990, 9(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199003007.htmChen M L, Liu X S, Guo C M, et al. A parameterization method of the site errors estimation of lightning location system. Plateau Meteor, 1990, 9(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199003007.htm [6] Brundell J B, Rodger C J, Dowden R L. Validation of single-station lightning location technique. Radio Science, 2002, 37(4): 11-12. [7] Berger G, Pedeboy S. Comparison Between Real CG Flashes And CG Flashes Detected by A Lightning Detection Network. International Conference on Lightning and Static Electricity(ICOLSE), Blackpool, UK, 2003. [8] Jerauld J, Rakov V A, Uman M A, et al. An evaluation of the performance characteristics of the US National Lightning Detection Network in Florida using rocket-triggered lightning. J Geophys Res Atmos, 2005, 110(D19): 1-16. [9] Nag A, Mallick S, Rakov V A, et al. Evaluation of US National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004-2009. J Geophys Res Atmos, 2011, 116(D2): 1-8. [10] Pohjola H, Mäkelä A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos Res, 2013, 123: 117-128. doi: 10.1016/j.atmosres.2012.10.019 [11] Zhang Y J, Lu W T, Chen L W, et al. Performance Characteristics of the Lightning Location System of Guangdong-Hongkong-Macau after the Upgrade in 2012.24th International Lightning Detection Conference, San Diego, Califonia, USA, 2016. [12] Schulz W, Diendorfer G, Pedeboy S, et al. The European lightning location system EUCLID-Part 1: Performance analysis and validation. Nat Hazards and Earth Syst Sci, 2016, 16(2): 595-605. doi: 10.5194/nhess-16-595-2016 [13] 张义军, 杨少杰, 吕伟涛, 等. 2006—2011年广州人工触发闪电观测试验和应用. 应用气象学报, 2012, 23(5): 513-522. doi: 10.3969/j.issn.1001-7313.2012.05.001Zhang Y J, Yang S J, Lü W T, et al. Comprehensive observation experiments and application study of artificially triggered lightning during 2006-2011. J Appl Meteor Sci, 2012, 23(5): 513-522. doi: 10.3969/j.issn.1001-7313.2012.05.001 [14] 肖桐, 张阳, 吕伟涛, 等. 人工触发闪电M分量的电流与电磁场特征. 应用气象学报, 2013, 24(4): 446-454. doi: 10.3969/j.issn.1001-7313.2013.04.007Xiao T, Zhang Y, Lü W T. Current and electromagnetic field of M component in triggered lightning. J Appl Meteor Sci, 2013, 24(4): 446-454. doi: 10.3969/j.issn.1001-7313.2013.04.007 [15] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展. 气象学报, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htmZhang Y J, Lv W T, Chen S D, et al. A review of lightning observation experiments during the last ten years in Guangdong. Acta Meteor Sinica, 2016, 74(5): 655-671. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201605001.htm [16] Rakov V A, Uman M A. Lightning: Physics And Effects //Cambridgeshire: Cambridge University Press, 2003. [17] 张义军, 张阳, 郑栋, 等. 2008-2014年广东人工触发闪电电流特征. 高电压技术, 2016, 42(11): 3404-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611006.htmZhang Y J, Zhang Y, Zheng D, et al. Current Characteristics of triggered lightnings in Guangdong from 2008 to 2014. High Voltage Engineering, 2016, 42(11): 3404-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611006.htm [18] 王敬轩, 张阳, 陈泽方, 等. 人工触发闪电不同放电阶段电流特征关系. 应用气象学报, 2020, 31(2): 224-235. doi: 10.11898/1001-7313.20200209Wang J X, Zhang Y, Chen Z F, et al. Relationship between current characteristics of rocket-triggered lightning during different discharge stages. J Appl Meteor Sci, 2020, 31(2): 224-235. doi: 10.11898/1001-7313.20200209 [19] 钱勇, 张阳, 张义军, 等. 人工触发闪电先驱电流脉冲波形特征及模拟. 应用气象学报, 2016, 27(6): 716-724. doi: 10.11898/1001-7313.20160608Qian Y, Zhang Y, Zhang Y J, et al. Characteristics and simulation of artificially triggered lightning precursor current pulse. J Appl Meteor Sci, 2016, 27(6): 716-724. doi: 10.11898/1001-7313.20160608 [20] 曹雪芬, 张源源, 刘三梅, 等. 闪电定位真实地表修订算法的检验评估. 广东气象, 2021, 43(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202103014.htmCao X F, Zhang Y Y, Liu S M, et al. Evaluation of real surface revision algorithm for lightning location. Guangdong Meteor, 2021, 43(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202103014.htm [21] 陈绿文, 张义军, 吕伟涛, 等. 闪电定位资料与人工引雷观测结果的对比分析. 高电压技术, 2009, 35(8): 1896-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200908023.htmChen L W, Zhang Y J, Lü W T, et al. Comparative analysis between LLS and observation of artificial triggered lightning. High Voltage Engineering, 2009, 35(8): 1896-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200908023.htm [22] Chen L W, Zhang Y J, Lu W T, et al. Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J Atmos Oceanic Technol, 2012, 29(12): 1835-1844. doi: 10.1175/JTECH-D-12-00028.1 [23] 禹继, 杨仲江, 陈绿文, 等. 粤港澳闪电定位系统探测效率及精确度评估. 高原气象, 2015, 34(3): 863-869. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503029.htmYu J, Yang Z J, Chen L W, et al. Evaluation of detection efficiency and accuracy of lightning location system of Guangdong-Hongkong-Macau. Plateau Meteor, 2015, 34(3): 863-869. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503029.htm [24] Zhu Y, Rakov V A, Tran M D, et al. Evaluation of ENTLN performance characteristics based on the ground truth natural and rocket-triggered lightning data acquired in Florida. J Geophys Res Atmos, 2017, 122(18): 9858-9866. doi: 10.1002/2017JD027270 [25] Li Q X, Wang J G, Cai L, et al. On the return-stroke current estimation of Foshan Total Lightning Location System(FTLLS). Atmos Res, 2021, 248: 1-9. [26] 陈绿文, 吕伟涛, 张义军, 等. 粤港澳闪电定位系统对高建筑物雷电的探测. 应用气象学报, 2020, 31(2): 165-174. doi: 10.11898/1001-7313.20200204Chen L W, Lü W T, Zhang Y J, et al. Detection results of Guangdong-Hongkong-Macao lightning location system for tall-object lightning. J Appl Meteor Sci, 2020, 31(2): 165-174. doi: 10.11898/1001-7313.20200204 [27] 郭宏博, 邱宗旭, 杨悦新, 等. 粤港澳闪电定位系统与深圳高塔雷电光学观测对比分析. 广东气象, 2017, 39(6): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201706017.htmGuo H B, Qiu Z X, Yang Y X, et al. Comparative analysis of Guangdong-Hongkong-Macao lightning location system and lightning optical observation of the high tower in Shenzhen. Guangdong Meteor, 2017, 39(6): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201706017.htm [28] 陈绿文, 黄智慧, 禹继, 等. 一次人工触发闪电事件的定位误差分析. 广东气象, 2010, 32(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201001007.htmChen L W, Huang Z H, Yu J, et al. Location error analysis of a triggered lightning flash. Guangdong Meteor, 2010, 32(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201001007.htm [29] 樊艳峰, 陆高鹏, 张阳, 等. 人工触发闪电初始连续电流的中低频磁场特征. 应用气象学报, 2020, 31(2): 213-223. doi: 10.11898/1001-7313.20200208Fan Y F, Lu G P, Zhang Y, et al. Characteristics of medium-low frequency magnetic fields of initial continuous current in rocket-triggered lightning. J Appl Meteor Sci, 2020, 31(2): 213-223. doi: 10.11898/1001-7313.20200208 [30] 张悦, 吕伟涛, 陈绿文, 等. 粤港澳大湾区两套闪电定位系统地闪探测性能的对比分析. 热带气象学报, 2021, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202103013.htmZhang Y, Lyu W T, Chen L W, et al. The comparative analysis of detection of cloud-to-ground lightning of two lightning location systems in Guangdong-Hongkong-Macao Greater Bay Area. J Trop Meteor, 2021, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202103013.htm