留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率模式对中国地表短波辐射季节预测

刘波 马利斌 容新尧 苏京志 鄢钰函 华莉娟 唐彦丽

刘波, 马利斌, 容新尧, 等. 高分辨率模式对中国地表短波辐射季节预测. 应用气象学报, 2022, 33(3): 341-352. DOI:  10.11898/1001-7313.20220308..
引用本文: 刘波, 马利斌, 容新尧, 等. 高分辨率模式对中国地表短波辐射季节预测. 应用气象学报, 2022, 33(3): 341-352. DOI:  10.11898/1001-7313.20220308.
Liu Bo, Ma Libin, Rong Xinyao, et al. High-resolution model for seasonal prediction of surface shortwave radiation in China. J Appl Meteor Sci, 2022, 33(3): 341-352. DOI:  10.11898/1001-7313.20220308.
Citation: Liu Bo, Ma Libin, Rong Xinyao, et al. High-resolution model for seasonal prediction of surface shortwave radiation in China. J Appl Meteor Sci, 2022, 33(3): 341-352. DOI:  10.11898/1001-7313.20220308.

高分辨率模式对中国地表短波辐射季节预测

DOI: 10.11898/1001-7313.20220308
资助项目: 

国家重点研发计划 2019YFC1510001

中国气象科学研究院基本科研业务费 2020Y005

中国气象科学研究院基本科研业务费 2021Z005

详细信息
    通信作者:

    刘波, 邮箱:boliu@cma.gov.cn

High-resolution Model for Seasonal Prediction of Surface Shortwave Radiation in China

  • 摘要: 基于中国气象科学研究院T255全球高分辨率气候系统模式(CAMS-CSM)2011—2020年多样本集合回报试验,评估模式在中国及3个典型区域地表短波辐射(downward short-wave radiation flux,DSWRF)的季节预测能力。结果表明:CAMS-CSM模式能较好预测DSWRF的季节变化特征,但春季、夏季预测强度偏弱,秋季、冬季偏强。不同季节、不同地区DSWRF异常场的预报技巧差异明显。由DSWRF异常的空间相关系数和时间相关系数可以看到,内蒙古和西北地区秋季、冬季预报技巧较高,京津冀部分地区夏季、秋季节预报技巧较低。从趋势异常综合评分指数看,中国区域超前1个月预报各季节评分均超过70分,对西北地区夏季、秋季的评分指数最高,超过80分。整体而言,高分辨率气候模式对中国区域DSWRF超前0~1个月预报有一定预测能力,尤其是太阳能资源丰富的西北地区,可为未来DSWRF短期预测及太阳能清洁能源选址等提供参考。除模式系统性偏差外,春季、夏季DSWRF预报偏差主要来源于总云量预报的模拟偏差,改进模式云微物理过程是提高DSWRF季节预测能力的重要途径。
  • 图  1  重点区域

    Fig. 1  Key areas

    图  2  各季节DSWRF观测气候态

    Fig. 2  Seasonal distribution of the observed DSWRF

    图  3  各季节DSWRF LM0预报与观测气候态差异

    Fig. 3  Difference of seasonal DSWRF between the prediction at LM0 and the observation

    图  4  各季节DSWRF观测标准差

    Fig. 4  easonal standard deviation of the observed DSWRF

    图  5  各季节DSWRF LM0预报与观测标准差的差异

    Fig. 5  Differences of seasonal DSWRF standard deviation between the prediction at LM0 and the observation

    图  6  DSWRF LM0预报异常与观测时间相关系数

    (黑色打点表示达到0.1显著性水平)

    Fig. 6  TCC of DSWRF between the prediction at LM0 and the observation

    (black dots denote passing the test of 0.1 level)

    图  7  各季节DSWRF不同超前时间预报区域平均与观测的时间相关系数

    Fig. 7  TCC of DSWRF between regional averaged prediction at different lead months and the observation in different seasons

    图  8  各季节DSWRF不同超前时间预报区域平均与观测的距平相关系数

    Fig. 8  ACC of DSWRF between regional averaged prediction at different lead months and observation in different seasons

    图  9  各季节DSWRF不同超前时间预报区域平均的P指数

    Fig. 9  Regional averaged P index of DSWRF predicted at different lead months in different seasons

    图  10  模式LM0预报的不同季节DSWRF预报偏差与总云量预报偏差相关分布

    (黑色打点表示达到0.1显著性水平)

    Fig. 10  Correlation coefficients between DSWRF biases and total cloud cover biases at LM0

    (black dots denote passing the test of 0.1 level)

  • [1] Solomon S, Qin D, Manning M, et al.Climate Change 2007:The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.New York:Cambridge University Press, 2007.
    [2] Gleick P H, Sdams R M, Amasino R M, et al. Climate change and the integrity of science. Science, 2010, 328: 689-690. doi:  10.1126/science.328.5979.689
    [3] 秦大河. 气候变化科学与人类可持续发展. 地理科学进展, 2014, 33(7): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201407002.htm

    Qin D H. Climate change science and sustainable human development. Prog Geogr, 2014, 33(7): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201407002.htm
    [4] 《中国能源》编辑部. 为力争二氧化碳排放于2030年前达到峰值, 努力争取2060年前实现碳中和而奋斗. 中国能源, 2020, 42(10): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN202010003.htm

    Editorial Board of China Energy. Striving to peak CO2 emissions by 2030 and achieving carbon neutrality by 2060. China Energy, 2020, 42(10): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN202010003.htm
    [5] 汪凯, 叶红, 陈锋, 等. 中国东南部太阳辐射变化特征、影响因素及其对区域气候的影响. 生态环境学报, 2010, 19(5): 1119-1124. doi:  10.3969/j.issn.1674-5906.2010.05.023

    Wang K, Ye H, Chen F, et al. Long-term change of solar radiation in southeastern China: Variation, factors, and climate forcing. Ecol Environ Sci, 2010, 19(5): 1119-1124. doi:  10.3969/j.issn.1674-5906.2010.05.023
    [6] 田华, 马建中, 李维亮, 等. 中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟. 应用气象学报, 2005, 16(3): 322-333. doi:  10.3969/j.issn.1001-7313.2005.03.006

    Tian H, Ma J Z, Li W L, et al. Simulation of forcing of sulfate aerosol on direct radiation and its climate effect over middle and eastern China. J Appl Meteor Sci, 2005, 16(3): 322-333. doi:  10.3969/j.issn.1001-7313.2005.03.006
    [7] 康慨, 卢胜. 基于WRF模式的光伏电站选址研究. 太阳能, 2016(11): 40-43;64. doi:  10.3969/j.issn.1003-0417.2016.11.009

    Kang K, Lu S. Research on the siting of photovoltaic power plants based on WRF model. Solar Energy, 2016(11): 40-43;64. doi:  10.3969/j.issn.1003-0417.2016.11.009
    [8] 李柯, 何凡能. 中国陆地太阳能资源开发潜力区域分析. 地理科学进展, 2010, 29(9): 1049-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201009006.htm

    Li K, He F N. Regional analysis of terrestrial solar resource development potential in China. Prog Geogr, 2010, 29(9): 1049-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201009006.htm
    [9] 王子琳, 鲁玺, 庄明浩, 等. 中国三北地区风-光互补发电系统空间优化研究. 全球能源互联网, 2020, 3(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-QNYW202001012.htm

    Wang Z L, Lu X, Zhuang M H, et al. Study on spatial optimization of wind-photovoltaic complementary power generation system in three northern regions of China. Global Energy Internet, 2020, 3(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-QNYW202001012.htm
    [10] 查良松. 我国地面太阳辐射量的时空变化研究. 地理科学, 1996, 16(3): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX603.005.htm

    Zha L S. A study on spatial and temporal variation of solar radiation in China. Sci Geogr Sinica, 1996, 16(3): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX603.005.htm
    [11] 李晓文, 李维亮, 周秀骥. 中国近30年太阳辐射状况研究. 应用气象学报, 1998, 9(1): 24-31. http://qikan.camscma.cn/article/id/19980104

    Li X W, Li W L, Zhou X J. Analysis of the solar radiation variation of China in recent 30 years. J Appl Meteor Sci, 1998, 9(1): 24-31. http://qikan.camscma.cn/article/id/19980104
    [12] 郑有飞, 关福来, 蔡子颖, 等. 我国南方中东部地区地面太阳总辐射变化规律. 应用气象学报, 2011, 22(3): 312-320. doi:  10.3969/j.issn.1001-7313.2011.03.007

    Zheng Y F, Guan F L, Cai Z Y, et al. Variation of surface solar radiation over the central and east of Southern China. J Appl Meteor Sci, 2011, 22(3): 312-320. doi:  10.3969/j.issn.1001-7313.2011.03.007
    [13] 齐月, 房世波, 周文佐. 近50年来中国地面太阳辐射变化及其空间分布. 生态学报, 2014, 34(24): 7444-7453. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201424033.htm

    Qi Y, Fang S B, Zhou W Z. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecolog Sinica, 2014, 34(24): 7444-7453. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201424033.htm
    [14] 李德平, 程兴宏, 孙治安, 等. 北京不同区域气溶胶辐射效应. 应用气象学报, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509

    Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509
    [15] 梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506

    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [16] 李义宇, 孙鸿娉, 杨俊梅, 等. 华北中部夏季气溶胶和云分布特征. 应用气象学报, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603

    Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603
    [17] 许建明, 何金海, 阎凤霞. 1961—2007年西北地区地面太阳辐射长期变化特征研究. 气候与环境研究, 2010, 15(1): 89-96. doi:  10.3878/j.issn.1006-9585.2010.01.10

    Xu J M, He J H, Yan F X. Research on secular variation of solar radiation over Northwest China from 1961 to 2007. Climatic Environ Res, 2010, 15(1): 89-96. doi:  10.3878/j.issn.1006-9585.2010.01.10
    [18] Yang L W, Jiang J, Liu T, et al. Projections of future changes in solar radiation in China based on CMIP5 climate models. Global Energy Interconnection, 2018, 1(4): 452-459.
    [19] Yu R C, Li W, Zhang X H, et al. Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv Atmos Sci, 2000, 17(4): 503-518. doi:  10.1007/s00376-000-0014-9
    [20] Kang I S, Jin K, Wang B, et al. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn, 2002, 19(5/6): 383-395.
    [21] Wang B, Kang I S, Lee J Y. Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J Climate, 2004, 17(4): 803-818. doi:  10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2
    [22] 汪方, 丁一汇. 全球气候模式对东亚地区地表短波辐射的模拟检验. 应用气象学报, 2008, 19(6): 749-759. doi:  10.3969/j.issn.1001-7313.2008.06.015

    Wang F, Ding Y H. Simulation test of global climate model for surface shortwave radiation in East Asia. J Appl Meteor Sci, 2008, 19(6): 749-759. doi:  10.3969/j.issn.1001-7313.2008.06.015
    [23] Sun D Z, Zhang T, Covey C, et al. Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J Climate, 2006, 19(16): 4059-4074. doi:  10.1175/JCLI3835.1
    [24] Chen L, Yu Y, Sun D. Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models?. J Climate, 2013, 26(14): 4947-4961. doi:  10.1175/JCLI-D-12-00575.1
    [25] Chen L, Hua L J, Rong X Y, et al. Cloud radiative feedbacks during the ENSO cycle simulated by CAMS-CSM. J Meteor Res, 2019, 33(4): 93-104.
    [26] Sun D Z, Yu Y, Zhang T. Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J Climate, 2009, 22(5): 1287-1304. doi:  10.1175/2008JCLI2267.1
    [27] Chen L, Sun D Z, Wang L, et al. A further study on the simulation of cloud-radiative feedbacks in the ENSO cycle in the tropical Pacific with a focus on the asymmetry. Asia-Pac J Atmos Sci, 2019, 55: 303-316. doi:  10.1007/s13143-018-0064-5
    [28] 吴统文, 宋连春, 刘向文, 等. 国家气候中心短期气候预测模式系统业务化进展. 应用气象学报, 2013, 24(5): 533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003

    Wu T W, Song L C, Liu X W, et al. Progress in developing the short-range operational climate prediction system of China National Climate Center. J Appl Meteor Sci, 2013, 24(5): 533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003
    [29] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201905012.htm

    Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Climate Change Res, 2019, 15(5): 519-525. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201905012.htm
    [30] Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 2016, 9: 1937-1958. doi:  10.5194/gmd-9-1937-2016
    [31] Rong X Y, Li J, Chen H M, et al. The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J Meteor Res, 2018, 32: 839-861. doi:  10.1007/s13351-018-8058-x
    [32] Hua L J, Chen L, Rong X Y, et al. An assessment of ENSO stability in CAMS climate system model simulations. J Meteor Res, 2019, 33: 80-88. doi:  10.1007/s13351-018-8092-8
    [33] Lu B, Ren H L. ENSO features, dynamics, and teleconnections to East Asian climate as simulated in CAMS-CSM. J Meteor Res, 2019, 33: 46-65. doi:  10.1007/s13351-019-8101-6
    [34] Liu B, Su J Z, Ma L B, et al. Seasonal prediction skills in the CAMS-CSM climate forecast system. Climate Dyn, 2021, 57: 2953-2970. doi:  10.1007/s00382-021-05848-z
    [35] 王旻燕, 姚爽, 姜立鹏, 等. 我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理. 气象科技进展, 2018, 8(1): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801038.htm

    Wang M Y, Yao S, Jiang L P, et al. Collection and pre-processing of satellite remote sensing data for China's global atmospheric reanalysis (CRA-40). Adv Meteor Sci Tech, 2018, 8(1): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801038.htm
    [36] Behringer D W, Xue Y. Eighth Symposium On Integrated Observing and Assimilation Systems For Atmosphere, Oceans, And Land Surface//AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle. Amer Meteor Soc, 2004, 23: 11-15.
    [37] Liu X W, Wu T W, Yang S, et al. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv Atmos Sci, 2015, 32(8): 1156-1172. doi:  10.1007/s00376-015-4194-8
    [38] 郭渠, 刘向文, 吴统文, 等. 基于BCC_CSM模式的中国东部夏季降水预测检验及订正. 大气科学, 2017, 41(1): 71-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201701006.htm

    Guo Q, Liu X W, Wu T W, et al. Verification and correction of East China summer rainfall prediction based on BCC_CSM. Chinese J Atmos Sci, 2017, 41(1): 71-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201701006.htm
    [39] 成菲, 李巧萍, 沈新勇, 等. BCC-CSM1.1m对欧亚积雪覆盖的预测评估. 应用气象学报, 2021, 32(5): 553-566. doi:  10.11898/1001-7313.20210504

    Cheng F, Li Q P, Shen X Y, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. doi:  10.11898/1001-7313.20210504
    [40] 徐忠峰, 韩瑛, 杨宗良. 区域气候动力降尺度方法研究综述. 中国科学(地球科学), 2019, 49(3): 487-498. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201903001.htm

    Xu Z F, Han Y, Yang Z L. Dynamical downscaling of regional climate: A review of methods and limitations. Sci China(Earth Sci), 2019, 49(3): 487-498. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201903001.htm
  • 加载中
图(10)
计量
  • 摘要浏览量:  1330
  • HTML全文浏览量:  207
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-04-07
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回