Modification of Leaf Water Content for the Photosynthetic and Biochemical Mechanism Model of C4 Plant
-
摘要: 叶片光合作用的准确模拟对陆地生态系统模型及全球变化对植被影响研究具有重要意义。水分是影响光合作用的重要因素,目前研究多采用土壤含水量表示,而非直接起作用的叶片含水量,这限制了光合作用的准确模拟。以玉米为研究对象,利用2014年6—10月中国气象科学研究院固城生态与农业气象试验站玉米6个水分梯度持续干旱试验数据,结合光合生化机理模型,定量研究最大羧化速率与叶片含水量的关系。结果表明:两者呈显著二次曲线关系,其拟合方程的决定系数达0.88;参数不同时,最大羧化速率的绝对值不同,但归一化后的叶片含水量修正函数与参数无关,当叶片含水量为80%左右时,其修正函数值为1,当叶片含水量降至70%左右时,其修正函数值为0。研究从叶片含水量影响方面完善了碳四植物光合生化机理模型,可为进一步提高光合作用模拟的准确性和玉米干旱监测预警提供参考。Abstract: The accurate simulation of leaf photosynthesis is of great significance to the study of terrestrial ecosystem model and understanding the impact of global change on vegetation. To improve the description of photosynthesis from phenomenon to mechanism, empirical model is gradually replaced by photosynthetic biochemical mechanism model, in which the photosynthetic biochemical mechanism model proposed by Farquhar is widely recognized and used. The effect of CO2 concentration on plant photosynthesis is considered by the model, but the response of plant photosynthetic parameters to temperature and light intensity is studied without considering water stress. Water is one of the important raw materials of photosynthesis, which directly affects leaf stomatal conductance, transpiration rate and photosynthetic rate, and then affects plant photosynthesis. Therefore, many experiments are carried out and the water response function is gradually established. However, these studies mostly focus on soil water content rather than leaf water content that directly affects photosynthesis, limiting the accurate simulation of photosynthesis.Taking maize from North China as the research object, drought simulation data are studied based on six water gradient tests which are carried out at Gucheng Ecological and Agro-meteorological Experimental Station of Chinese Academy of Meteorological Sciences from June to October in 2014. Different from the previous empirical model of photosynthesis, a C4 plant photosynthetic biochemical mechanism model developed from the biochemical mechanism model proposed by Farquhar and modified by von Caemmerer is applied. The sampling blades and the environmental factors such as temperature, CO2, relative humidity, and light intensity are kept consistent, and the temperature difference between different observation times are adjusted to quantitatively study the relationship between leaf water content and maximum carboxylation rate accurately. The results show that the relationship between them can be expressed in a quadratic curve significantly (passing the test of 0.01 level), and the determination coefficient of the fitting equation is up to 0.88. With different parameters, the values of the maximum carboxylation rate are different, but the normalized leaf water content correction function is independent of the parameters. Through calculation, when the leaf water content is about 80%, the value of correction function is 1, and when the leaf water content drops to about 70%, the value is 0. This result perfects the photosynthetic biochemical mechanism model of C4 plant from the perspective of leaf water content, which provides a reference for further improving the accuracy of photosynthesis simulation, drought monitoring and early warning of maize.
-
Key words:
- leaf water content;
- photosynthesis;
- quantitative simulation;
- maize
-
表 1 2014年不同水分处理的叶片含水量(单位:%)
Table 1 Leaf water content at different watering treatments in 2014 (unit:%)
水分处理 07-11 07-18 07-31 08-07 08-20 W1 78.9 74.4 72.9 71.6 68.9 W2 81.8 75.8 73.8 72.1 71.6 W3 83.7 75.9 74.1 72.4 71.8 W4 84.3 77.4 76.4 72.9 72.0 W5 84.4 78.3 77.1 74.3 72.1 W6 84.9 78.6 78.1 75.1 72.2 表 2 2014年不同水分处理的土壤含水量(单位:%)
Table 2 Relative soil water content at different watering treatments in 2014 (unit:%)
水分处理 07-11 07-18 07-31 08-07 08-20 W1 48.8 43.6 41.0 38.9 37.3 W2 58.4 50.3 45.3 44.3 37.7 W3 66.5 55.9 50.6 46.5 45.6 W4 81.8 64.5 51.2 49.2 45.2 W5 88.5 69.7 56.3 49.5 42.1 W6 92.4 71.0 59.4 51.9 49.2 -
[1] 李志恒, 张一平.陆地生态系统物质交换模型.生态学杂志, 2008, 27(7):1207-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200807024.htmLi Z H, Zhang Y P. Models of mass exchange in terrestrial ecosystem. Chinese Journal of Ecology, 2008, 27(7): 1207-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200807024.htm [2] 冯晓钰. 夏玉米叶片含水量变化及其对光合作用的影响. 北京: 中国气象科学研究院, 2017.Feng X Y. Changes of Leaf Water Content in Summer Maize and Its Effects on Photosynthesis. Beijing: Chinese Academy of Meteorological Sciences, 2017. [3] 李银鹏, 季劲钧. 陆地碳循环研究中植物生理生态过程模拟进展. 生态学报, 2002, 22(12): 2227-2237. doi: 10.3321/j.issn:1000-0933.2002.12.029Li Y P, Ji J J. Progresses in modeling plant ecophysiological processes in the study of terrestrial carbon cycles. Acta Ecologica Sinica, 2002, 22(12): 2227-2237. doi: 10.3321/j.issn:1000-0933.2002.12.029 [4] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1): 78-90. doi: 10.1007/BF00386231 [5] Harley P C, Tenhunen J D. Modeling the Photosynthetic Response of C3 Leaves to Environmental Factors//Modeling Crop Photosynthesis-from Biochemistry to Canopy. Madison: Crop Science Science Society of America, 1991(19): 17-39. [6] Harley P C, Thomas R B, Reynolds J F, et al. Modeling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment, 1992, 15(3): 271-282. [7] Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10(4): 603-628. doi: 10.1029/96GB02692 [8] 魏琼, 王龙, 文俊, 等. 土壤水分条件对蚕豆花荚期光合作用-光响应特征的影响. 节水灌溉, 2018(4): 1-4;10. doi: 10.3969/j.issn.1007-4929.2018.04.001Wei Q, Wang L, Wen J, et al. Effects of soil water conditions on the characteristics of light response in photosynthesis in the anthesis and fruiting period of the board beans. Water Saving Irrigation, 2018(4): 1-4;10. doi: 10.3969/j.issn.1007-4929.2018.04.001 [9] 云文丽, 侯琼, 王海梅, 等. 不同土壤水分对向日葵光合光响应的影响. 应用气象学报, 2014, 25(4): 476-482. doi: 10.3969/j.issn.1001-7313.2014.04.011Yun W L, Hou Q, Wang H M, et al. Effects of different soil moistures on photosynthetic characteristics of sunflower. J Appl Meteor Sci, 2014, 25(4): 476-482. doi: 10.3969/j.issn.1001-7313.2014.04.011 [10] 刘建栋, 王馥棠, 于强, 等. 华北地区冬小麦叶片光合作用模型在农业干旱预测中的应用研究. 应用气象学报, 2003, 14(4): 469-478. doi: 10.3969/j.issn.1001-7313.2003.04.011Liu J D, Wang F T, Yu Q, et al. Application of the leaf photosynthesis model for forecasting effect of drought on winter wheat in North China Plain. J Appl Meteor Sci, 2003, 14(4): 469-478. doi: 10.3969/j.issn.1001-7313.2003.04.011 [11] 李丽, 申双和, 孙钢, 等. 土壤水分对冬小麦气孔导度及光合速率的影响与模拟. 中国农业气象, 2016, 37(6): 666-673. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201606006.htmLi L, Shen S H, Sun G, et al. Simulation on and impact of soil moisture on stomatal conductance and photosynthesis rate of winter wheat. Chinese Journal of Agrometeorology, 2016, 37(6): 666-673. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201606006.htm [12] 王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建. 应用气象学报, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302 [13] Kozlowski T T, Pallardy S G. Growth Control in Woody Plants. Elsevier, 1997. [14] 林祥磊, 许振柱, 王玉辉, 等. 羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟. 生态学报, 2008, 28(10): 4718-4724. doi: 10.3321/j.issn:1000-0933.2008.10.012Lin X L, Xu Z Z, Wang Y H, et al. Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica, 2008, 28(10): 4718-4724. doi: 10.3321/j.issn:1000-0933.2008.10.012 [15] 张彦敏, 周广胜. 植物叶片最大羧化速率对多因子响应的模拟. 科学通报, 2012, 57(13): 1112-1118;1183-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201213008.htmZhang Y M, Zhou G S. Simulation of response of maximum carboxylation rate of plant leaves to multiple factors. Chinese Science Bulletin, 2012, 57(13): 1112-1118;1183-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201213008.htm [16] Katul G, Leuning R, Oren R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 2003, 26(3): 339-350. [17] Keenan T, Sabate S, Gracia C. Soil water stress and coupled photosynthesis-conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agricultural and Forest Meteorology, 2010, 150(3): 443-453. doi: 10.1016/j.agrformet.2010.01.008 [18] Egea G, Verhoef A, Vidale P L. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 2011, 151(10): 1370-1384. doi: 10.1016/j.agrformet.2011.05.019 [19] von Caemmerer S. Biochemical Models of Leaf Photosynthesis. Csiro Publishing, 2000. [20] 冯晓钰, 周广胜. 夏玉米叶片水分变化与光合作用和土壤水分的关系. 生态学报, 2018, 38(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201801018.htmFeng X Y, Zhou G S. Relationship of leaf water content with photosynthesis and soil water content in summer maize. Acta Ecologica Sinica, 2018, 38(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201801018.htm [21] 刘祖贵, 陈金平, 段爱旺, 等. 夏玉米叶片生理特性与生态因子间关系的研究. 杂粮作物, 2006, 26(4): 288-292. doi: 10.3969/j.issn.2095-0896.2006.04.015Liu Z G, Chen J P, Duan A W, et al. Relationship between physiological characteristics of summer maize and ecological factors. Rain Fed Crops, 2006, 26(4): 288-292. doi: 10.3969/j.issn.2095-0896.2006.04.015 [22] Massad R S, Tuzet A, Bethenod O. The effect of temperature on C4-type leaf photosynthesis parameters. Plant, Cell & Environment, 2007, 30(9): 1191-1204. [23] 李化龙, 王景红, 张维敏, 等. 高温胁迫对猕猴桃叶片叶绿素荧光特性的影响. 应用气象学报, 2021, 32(4): 468-478. doi: 10.11898/1001-7313.20210408Li H L, Wang J H, Zhang W M, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit. J Appl Meteor Sci, 2021, 32(4): 468-478. doi: 10.11898/1001-7313.20210408 [24] 李临颖, 吴元中, 段项锁. 辐射增温效应对水稻叶片温度及光合速率的影响. 应用气象学报, 1993, 4(2): 250-255. http://qikan.camscma.cn/article/id/19930242Li L Y, Wu Y Z, Duan X S. The heating effects of irradiance on rice leaf temperature and its influence on the photosynthetic rate. J Appl Meteor Sci, 1993, 4(2): 250-255. http://qikan.camscma.cn/article/id/19930242 [25] 刘建栋, 周秀骥, 于强. 温度对夏玉米光合生产力影响的数值模拟研究. 应用气象学报, 2002, 13(4): 397-405. http://qikan.camscma.cn/article/id/20020454Liu J D, Zhou X J, Yu Q. Simulation of impacts of temperature on photosynthetic productivity of summer maize. J Appl Meteor Sci, 2002, 13(4): 397-405. http://qikan.camscma.cn/article/id/20020454 [26] von Caemmerer S, Farquhar G, Berry J. Biochemical Model of C3 Photosynthesis//Photosynthesis in Silico. Springer Netherlands, 2009: 209-230. [27] 马青荣, 左璇, 胡程达, 等. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409 [28] Perdomo J A, Elizabete C S, Carmen H C, et al. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: Implications for modeling photosynthesis. Frontiers in Plant Science, 2016, 7(1719): 1-16. [29] Rodrigo A, Recous S, Neel C, et al. Modelling temperature and moisture effects on C-N transformations in soils: Comparison of nine models. Ecological Modelling, 1997, 102(2/3): 325-339. [30] 陈小平, 王树东, 张立福, 等. 植被叶片含水量反演的精度及敏感性. 遥感信息, 2016, 31(1): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201601008.htmChen X P, Wang S D, Zhang L F, et al. Accuracy and sensitivity of vegetation leaf water content inversion. Remote Sensing Information, 2016, 31(1): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201601008.htm [31] Zhu X, Wang T, Skidmore A K, et al. Canopy leaf water content estimated using terrestrial LiDAR. Agricultural and Forest Meteorology, 2017, 232: 152-162. doi: 10.1016/j.agrformet.2016.08.016 [32] 刘二华, 周广胜, 周莉, 等. 夏玉米不同生育期叶片和冠层含水量的遥感反演. 应用气象学报, 2020, 31(1): 52-62. doi: 10.11898/1001-7313.20200105Liu E H, Zhou G S, Zhou L, et al. Remote sensing inversion of leaf and canopy water content in different growth stages of summer maize. J Appl Meteor Sci, 2020, 31(1): 52-62. doi: 10.11898/1001-7313.20200105 [33] 陈秀青, 杨琦, 韩景晔, 等. 基于叶冠尺度高光谱的冬小麦叶片含水量估算. 光谱学与光谱分析, 2020, 40(3): 233-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003047.htmChen X Q, Yang Q, Han J Y, et al. Estimation of winter wheat leaf water content based on leaf and canopy hyperspectral data. Spectroscopy and Spectral Analysis, 2020, 40(3): 233-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003047.htm [34] 王帆, 何奇瑾, 周广胜. 夏玉米三叶期持续干旱下不同叶位叶片含水量变化及其与光合作用的关系. 生态学报, 2019, 39(1): 254-264. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201901025.htmWang F, He Q J, Zhou G S. Leaf water content at different positions and its relationship with photosynthesis when consecutive drought treatments are applied to summer maize from the 3-leaf stage. Acta Ecologica Sinica, 2019, 39(1): 254-264. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201901025.htm [35] 任传友, 姜卓群, 苏小琁, 等. 水分胁迫/复水对谷子光合特性及产量影响. 应用气象学报, 2021, 32(4): 456-467. doi: 10.11898/1001-7313.20210407Ren C Y, Jiang Z Q, Su X X, et al. Effects of water stress/rewatering on leaf photosynthetic characteristics and grain yield of foxtail millet. J Appl Meteor Sci, 2021, 32(4): 456-467. doi: 10.11898/1001-7313.20210407