留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引发东北极端暴雪的黄渤海气旋爆发性发展机制

何立富 齐道日娜 余文

何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401..
引用本文: 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401.
He Lifu, Chyi Dorina, Yu Wen. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401.
Citation: He Lifu, Chyi Dorina, Yu Wen. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401.

引发东北极端暴雪的黄渤海气旋爆发性发展机制

DOI: 10.11898/1001-7313.20220401
资助项目: 

公益性行业(气象)科研专项 GYHY201506006

详细信息
    通信作者:

    何立富, 邮箱:helifu@cma.gov.cn

Development Mechanisms of the Yellow Sea and Bohai Sea Cyclone Causing Extreme Snowstorm in Northeast China

  • 摘要: 利用高分辨率观测资料和ERA5再分析资料, 分析造成2021年11月7—8日东北极端暴雪的温带气旋结构特征及爆发性发展机制, 结果表明:温带气旋发生在高空冷涡背景下, 地面气旋在黄海形成后出现爆发性快速增强并沿东北地区东部北上。地面降雪区主要分布在气旋西侧, 且降雪强度与气旋的发生发展密切相关;地面气旋在爆发性发展后由叶状云系演变为逗点涡旋云系, 并表现出明显的锋面断裂和暖锋包卷;其垂直结构也先后出现高空锋区断裂、干暖核形成和中性锢囚锋区加强;西伯利亚高压脊、华北高空槽和东北高压脊3个异常中心构成Rossby波列, 随着高度异常中心不断东移及波能量向下游地区频散, 华北高空槽区的波作用通量明显增大导致华北冷涡快速增强, 涡度因子的急剧增大有利于地面气旋爆发性发展;随着平流层位涡高值区沿等熵面不断向南发展和向下传播, 导致中层冷涡快速发展并向下伸展, 诱发地面气旋爆发性增强。
  • 图  1  2021年11月6日08:00—9日08:00累积降水量(填色)(a)及11月9日08:00积雪深度(填色)(b)

    (黑色圆点为通辽站, 下同)

    Fig. 1  The accumulative precipitation from 0800 BT 6 Nov to 0800 BT 9 Nov in 2021(the shaded)(a), the snowfall depth at 0800 BT 9 Nov 2021(the shaded)(b)

    (the black dot denotes the location of Tongliao Station, the same hereinafter)

    图  2  2021年11月7—8日500 hPa位势高度场(实线,单位:dagpm),海平面气压场(虚线,单位:hPa)及对应时次12 h累积降水量(填色)

    Fig. 2  500 hPa geopotential height(the solid line, unit:dagpm), sea level pressure(the dashed line, unit:hPa) and corresponding 12 h accumulative precipitation(the shaded) from 7 Nov to 8 Nov in 2021

    图  3  2021年11月7日14:00—9日08:00温带气旋路径和逐6 h最大降水量站点位置(a)以及气旋中心海平面气压和逐6 h最大降水量(b)

    Fig. 3  Path of extratropical cyclone and stations with 6 h accumulative maximum precipitation(a) and sea level pressure in cyclone center and 6 h maximum precipitation(b) from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    图  4  2021年11月7日14:00—9日08:00 FY-4A气象卫星观测的黄渤海气旋云顶亮温(填色)

    Fig. 4  TBB(the shaded) of the Yellow Sea and Bohai Sea cyclone observed by FY-4A from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    图  5  2021年11月7日20:00—8日20:00 850 hPa风场(矢量)与温度场(虚线,单位:℃),海平面气压场(实线,单位:hPa)

    (黑色粗线为锋面)

    Fig. 5  850 hPa wind(the vector) and temperature(the dashed line, unit:℃), sea level pressure (the solid line, unit:hPa) from 2000 BT 7 Nov to 2000 BT 8 Nov in 2021

    (the thick black line denotes the front)

    图  6  2021年11月7—9日涡度(填色)和垂直速度(虚线,单位:Pa·s-1)沿850 hPa低涡中心垂直剖面

    (△表示850 hPa低涡中心所在经度位置, 下同)

    Fig. 6  Cross-section of vorticity(the shaded) and vertical velocity(the dotted line, unit:Pa·s-1) along 850 hPa vortex center from 7 Nov to 9 Nov in 2021

    (△ denotes the longitude of 850 hPa vortex center, the same hereinafter)

    图  7  2021年11月7—9日温度(虚线,单位:℃)和相对湿度(灰色)沿850 hPa低涡中心垂直剖面

    (黑色粗线为温度槽线和脊线)

    Fig. 7  Cross-section of temperature(the dashed line, unit:℃) and relative humility(the gray) along 850 hPa vortex center from 7 Nov to 9 Nov in 2021

    (black bold lines denote trough and ridge of temperature contours)

    图  8  2021年11月7日14:00—8日08:00 500 hPa位势高度(实线,单位:dagpm)、距平(填色)和波作用通量(矢量)

    Fig. 8  500 hPa geopotential height(the solid line, unit:dagpm) with its anomaly(the shaded) and wave-activity fluxes(the vector) from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    图  9  2021年11月7—9日位涡沿850 hPa低涡中心的垂直剖面(填色)

    Fig. 9  Cross-section of potential vorticity along 850 hPa vortex center from 7 Nov to 9 Nov in 2021(the shaded)

  • [1] Bosart L F, Lin S C. A diagnostic analysis of the President' Day storm of February 1979.Mon Wea Rev, 1984, 112(11):2148-2177. doi:  10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2
    [2] Braham R R Jr. The midwest snow storm of 8-11 December 1977. Mon Wea Rev, 1983, 111(2): 253-272. doi:  10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2
    [3] Sanders F, Gyakum J R. Synoptic dynamic climatology of the "Bomb". Mon Wea Rev, 1980, 108(10): 1589-1606. doi:  10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
    [4] Ninomiya K. Polar low development over the east coast of Asian continent on 9-11 December 1985. J Meteor Soc Japan, 1991, 69(6): 669-685. doi:  10.2151/jmsj1965.69.6_669
    [5] 孙建华, 赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析. 气候与环境研究, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm

    Sun J H, Zhao S X. Multi-scale systems and conceptual model on freezing rain and snow storm over southern China during January-February 2008. Climatic and Environmental Research, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm
    [6] 叶晨, 王建捷, 张文龙. 北京2009年"1101"暴雪的形成机制. 应用气象学报, 2011, 22(4): 398-410. doi:  10.3969/j.issn.1001-7313.2011.04.002

    Ye C, Wang J J, Zhang W L. Formation mechanism of the snowstorm over Beijing in early winter of 2009. J Appl Meteor Sci, 2011, 22(4): 398-410. doi:  10.3969/j.issn.1001-7313.2011.04.002
    [7] 李津, 赵思雄, 孙建华. 一次华北破纪录暴雪成因的分析研究. 气候与环境研究, 2017, 22(6): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201706004.htm

    Li J, Zhao S X, Sun J H. Analysis of a record heavy snowfall event in North China. Climatic and Environmental Research, 2017, 22(6): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201706004.htm
    [8] 杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻"天气过程锋区特征分析. 气象学报, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm

    Yang G M, Mao D Y, Kong Q. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm
    [9] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [10] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [11] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [12] 罗辉, 肖递祥, 匡秋明, 等. 四川盆地暖区暴雨的雷达回波特征及分类识别. 应用气象学报, 2020, 31(4): 460-470. doi:  10.11898/1001-7313.20200408

    Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi:  10.11898/1001-7313.20200408
    [13] 张迎新, 侯瑞钦, 张守保. 回流暴雪过程的诊断分析和数值试验. 气象, 2007, 33(9): 25-32. doi:  10.3969/j.issn.1000-0526.2007.09.004

    Zhang Y X, Hou R Q, Zhang S B. Numerical experiment and disgnosis on a heavy snow of return flow events. Meteor Mon, 2007, 33(9): 25-32. doi:  10.3969/j.issn.1000-0526.2007.09.004
    [14] 王迎春, 钱婷婷, 郑永光. 北京连续降雪过程分析. 应用气象学报, 2004, 15(1): 58-65. doi:  10.3969/j.issn.1001-7313.2004.01.007

    Wang Y C, Qian T T, Zheng Y G. Primary analysis of the longest-lasting snowfall in Beijing. J Appl Meteor Sci, 2004, 15(1): 58-65. doi:  10.3969/j.issn.1001-7313.2004.01.007
    [15] 蒋建莹, 史历, 倪允琪. 一次"高影响天气"的弱降雪过程的数值研究. 应用气象学报, 2005, 16(2): 231-237. doi:  10.3969/j.issn.1001-7313.2005.02.012

    Jiang J Y, Shi L, Ni Y Q. A simulation of a high impact weather event. J Appl Meteor Sci, 2005, 16(2): 231-237. doi:  10.3969/j.issn.1001-7313.2005.02.012
    [16] 杨成芳, 李泽椿, 周兵, 等. 渤海南部沿海冷流暴雪的中尺度特征. 南京气象学院学报, 2007, 30(6): 857-865. doi:  10.3969/j.issn.1674-7097.2007.06.018

    Yang C F, Li Z C, Zhou B, et al. Mesoscale analysis of ocean-effect snowstorms in the south coastland of Bohai Sea. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 857-865. doi:  10.3969/j.issn.1674-7097.2007.06.018
    [17] 于志良. 胶东半岛冷流降雪与海气湍流感热输送的关系. 气象学报, 1998, 56(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB801.011.htm

    Yu Z L. The relation between cold flow snowfall and sea-air sensible heat transportation in Jiaodong Peninsula. Acta Meteor Sinica, 1998, 56(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB801.011.htm
    [18] 周淑玲, 丛美环, 吴增茂, 等. 2005年12月3—21日山东半岛持续性暴雪特征及维持机制. 应用气象学报, 2008, 19(4): 444-453. doi:  10.3969/j.issn.1001-7313.2008.04.008

    Zhou S L, Cong M H, Wu Z M, et al. Characteristics and maintaining mechanisms of sustained cold-air outbreak snowstorm processes in Shandong Peninsula during December 3-21, 2005. J Appl Meteor Sci, 2008, 19(4): 444-453. doi:  10.3969/j.issn.1001-7313.2008.04.008
    [19] 崔宜少, 张丰启, 李建华, 等. 2005年山东半岛连续三次冷流暴雪过程的分析. 气象科学, 2008, 28(4): 395-401. doi:  10.3969/j.issn.1009-0827.2008.04.007

    Cui Y S, Zhang F Q, Li J H, et al. The analyses of three snowstorm processes on Shandong Peninsula in 2005. J Meteor Sci, 2008, 28(4): 395-401. doi:  10.3969/j.issn.1009-0827.2008.04.007
    [20] 王文, 程麟生. "96.1"高原暴雪过程横波型不稳定的数值研究. 应用气象学报, 2000, 11(4): 392-399. doi:  10.3969/j.issn.1001-7313.2000.04.002

    Wang W, Cheng L S. Numerical study of transversal wave instability for the "96.1" snowstorm event. J Appl Meteor Sci, 2000, 11(4): 392-399. doi:  10.3969/j.issn.1001-7313.2000.04.002
    [21] 王建中, 丁一汇. 一次华北强降雪过程的湿对称性研究. 气象学报, 1995, 53(4): 451-459. doi:  10.3321/j.issn:0577-6619.1995.04.003

    Wang J Z, Ding Y H. Research of moist symmetric instability in a strong snowfall in North China. Acta Meteor Sinica, 1995, 53(4): 451-459. doi:  10.3321/j.issn:0577-6619.1995.04.003
    [22] 陈涛, 崔彩霞. "2010.1.6 "新疆北部特大暴雪过程中的锋面结构及降水机制. 气象, 2012, 38(8): 921-931. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201208006.htm

    Chen T, Cui C X. The frontal structure and precipitation mechanism in the 6 January 2010 heavy snowfall event happening in North Xinjiang. Meteor Mon, 2012, 38(8): 921-931. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201208006.htm
    [23] 盛春岩, 杨晓霞. 一次罕见的山东暴雪天气的对称不稳定分析. 气象, 2002, 28(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200203007.htm

    Sheng C Y, Yang X X. Symmetry instability analysis of an unusual storm snow in Shandong Province. Meteor Mon, 2002, 28(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200203007.htm
    [24] 张腾飞, 鲁亚斌, 张杰, 等. 2000年以来云南4次强降雪过程的对比分析. 应用气象学报, 2007, 18(1): 64-72. doi:  10.3969/j.issn.1001-7313.2007.01.009

    Zhang T F, Lu Y B, Zhang J, et al. Contrast analysis of 4 heavy snow events in Yunnan since 2000. J Appl Meteor Sci, 2007, 18(1): 64-72. doi:  10.3969/j.issn.1001-7313.2007.01.009
    [25] 范俊红, 易笑园. 大范围持续暴雪过程中多种影响系统的对比分析. 气象学报, 2019, 77(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906001.htm

    Fan J H, Yi X Y. Comparative analysis of several influencing systems in the process of alarge-scale continuous snowstorm. Acta Meteor Sinica, 2019, 77(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906001.htm
    [26] 王丽荣, 汤达章, 胡志群, 等. 多普勒雷达的速度图像特征及其在一次降雪过程中的应用. 应用气象学报, 2006, 17(4): 452-457. doi:  10.3969/j.issn.1001-7313.2006.04.009

    Wang L R, Tang D Z, Hu Z Q, et al. The Doppler radar velocity image features and its application in a snowfall process. J Appl Meteor Sci, 2006, 17(4): 452-458. doi:  10.3969/j.issn.1001-7313.2006.04.009
    [27] 迟竹萍, 龚佃利. 山东一次连续性降雪过程云微物理参数数值模拟研究. 气象, 2006, 32(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607003.htm

    Chi Z P, Gong D L. A numerical simulation of cloud microphysics parameters for sustaining snowfall in Shandong Province. Meteor Mon, 2006, 32(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607003.htm
    [28] 孙晶, 王鹏云, 李想, 等. 北方两次不同类型降雪过程的微物理模拟研究. 气象学报, 2007, 65(1): 29-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200701002.htm

    Sun J, Wang P Y, Li X, et al. Numerical study on microphysical processes of two different snowfall cases in North China. Acta Meteor Sinica, 2007, 65(1): 29-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200701002.htm
    [29] 王洪庆, 张焱, 陶祖钰, 等. 黄海气旋数值模拟的可视化应用. 应用气象学报, 2000, 11(3): 282-286. http://qikan.camscma.cn/article/id/20000343

    Wang H Q, Zhang Y, Tao Z Y, et al. Visualization of the numerical simulation of a Yellow Sea cyclone. J Appl Meteor Sci, 2000, 11(3): 282-286. http://qikan.camscma.cn/article/id/20000343
    [30] 张伟, 陶祖钰, 胡永云, 等. 气旋发展中平流层空气干侵入现象分析. 北京大学学报(自然科学版), 2006, 42(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200601011.htm

    Zhang W, Tao Z Y, Hu Y Y, et al. A study on the dry intrusion of air flows from the lower stratosphere in a cyclone development. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200601011.htm
    [31] 王达文. 东亚大陆东岸的倒暖锋. 气象, 1975, 1(10): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197510002.htm

    Wang D W. An inverted warm front along the east coast of East Asia. Meteor Mon, 1975, 1(10): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197510002.htm
    [32] 熊秋芬, 张玉婷, 姜晓飞, 等. 锢囚气旋钩状云区暴雪过程的水汽源地及输送分析. 气象, 2018, 44(10): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810003.htm

    Xiong Q F, Zhang Y T, Jiang X F, et al. Analysis of moisture source and transport of snowstorm in hooked cloud area of an occluded cyclone. Meteor Mon, 2018, 44(10): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810003.htm
    [33] 蔡丽娜, 隋迎玖, 刘大庆, 等. 一次爆发性气旋引发的罕见暴风雪过程分析. 北京大学学报(自然科学版), 2009, 45(4): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200904026.htm

    Cai L N, Sui Y J, Liu D Q, et al. Analysis on an unusual snowstorm event caused by explosive cyclone. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(4): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200904026.htm
    [34] 刘宁微, 齐琳琳, 韩江文. 北上低涡引发辽宁历史罕见暴雪天气过程的分析. 大气科学, 2009, 33(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902007.htm

    Liu N W, Qi L L, Han J W. The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China. Chinese J Atmos Sci, 2009, 33(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902007.htm
    [35] 赵宇, 朱皓清, 蓝欣, 等. 基于CloudSat资料的北上江淮气旋暴雪云系结构特征. 地球物理学报, 2018, 61(12): 4789-4804. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812007.htm

    Zhao Y, Zhu H Q, Lan X, et al. Structure of the snow storm cloud associated with northward Jianghuai cyclone based on CloudSat satellite data. Chinese J Geophys, 2018, 61(12): 4789-4804. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812007.htm
    [36] 王东海, 端义宏, 刘英, 等. 一次秋季温带气旋的雨雪天气过程分析. 气象学报, 2013, 71(4): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304003.htm

    Wang D H, Duan Y H, Liu Y, et al. A case study of the mixed rainfall-snowfall event associated with an extratropical cyclone in autumn. Acta Meteor Sinica, 2013, 71(4): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304003.htm
    [37] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展. 气象学报, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm

    Wu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm
    [38] 寿绍文. 位涡理论及其应用. 气象, 2010, 36(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201003004.htm

    Shou S W. Theory and application of the potential vorticity. Meteor Mon, 2010, 36(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201003004.htm
    [39] 黄立文, 仪清菊, 秦曾濒, 等. 西北太平洋温带气旋爆发性发展的热力-动力学分析. 气象学报, 1999, 57(5): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905007.htm

    Huang L W, Yi Q J, Qin Z B, et al. Dynamics/thermdynamics diagnosis of explosive development of extratropical cyclones over the Northwestern Pacific Ocean. Acta Meteor Sinica, 1999, 57(5): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905007.htm
    [40] 郑永骏, 吴国雄, 刘屹岷. 涡旋发展和移动的动力和热力问题I: PV-Q观点. 气象学报, 2013, 71(2): 185-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302003.htm

    Zheng Y J, Wu G X, Liu Y M. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view. Acta Meteor Sinica, 2013, 71(2): 185-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302003.htm
    [41] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146: 1999-2049.
    [42] Takaya K, Nakamura H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett, 1997, 24(23): 2985-2988.
    [43] Takaya K, Nakamura H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 2001, 58(6): 608-627.
  • 加载中
图(9)
计量
  • 摘要浏览量:  960
  • HTML全文浏览量:  143
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-18
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回