Development Mechanisms of the Yellow Sea and Bohai Sea Cyclone Causing Extreme Snowstorm in Northeast China
-
摘要: 利用高分辨率观测资料和ERA5再分析资料, 分析造成2021年11月7—8日东北极端暴雪的温带气旋结构特征及爆发性发展机制, 结果表明:温带气旋发生在高空冷涡背景下, 地面气旋在黄海形成后出现爆发性快速增强并沿东北地区东部北上。地面降雪区主要分布在气旋西侧, 且降雪强度与气旋的发生发展密切相关;地面气旋在爆发性发展后由叶状云系演变为逗点涡旋云系, 并表现出明显的锋面断裂和暖锋包卷;其垂直结构也先后出现高空锋区断裂、干暖核形成和中性锢囚锋区加强;西伯利亚高压脊、华北高空槽和东北高压脊3个异常中心构成Rossby波列, 随着高度异常中心不断东移及波能量向下游地区频散, 华北高空槽区的波作用通量明显增大导致华北冷涡快速增强, 涡度因子的急剧增大有利于地面气旋爆发性发展;随着平流层位涡高值区沿等熵面不断向南发展和向下传播, 导致中层冷涡快速发展并向下伸展, 诱发地面气旋爆发性增强。Abstract: The structure evolution and explosive development mechanisms of the Yellow Sea and Bohai Sea cyclone causing the extreme snow in Northeast China from 7 November to 9 November in 2021 are analyzed with high-resolution observations and the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data (ERA5) with a 0.25° by 0.25° spatial resolution. Results show that the extreme snowstorm occurs under the background of high-altitude cold vortex collocated with surface cyclone. After the formation of the surface cyclone in the Yellow Sea, it strengthens rapidly and moves northward along the eastern part of Northeast China. The snowfall area is mainly distributed on the west side of the cyclone, and the snowfall intensity is closely related to the occurrence and development of the surface cyclone. Its explosive development stage corresponds to the strongest period of the extreme blizzard process. The Yellow Sea and Bohai Sea cyclone is generated from a ground inverted trough which gradually strengthens with eastward shift into the sea. During its explosive developing and occluding stages, the leaf cloud system evolved into hook comma cloud system and vortex cloud system. The horizontal structure shows frontal fracture and the warm front back bending and wrapping, while the vertical structure shows high-altitude frontal fracture, the emergence of dry and warm center, the formation of neutral occluded front, and deep low value system from inclined vortex column. Wave activity flux analysis shows that the ridge in Siberian, the trough in North China and the ridge in Northeast China at 500 hPa devote to Rossby wave train. With the continuous eastward movement and the wave energy dispersion downstream of the positive anomaly center in the upper reaches of Siberia, the wave activity flux from the northwest in the North China trough is rapidly enhanced, and therefore the cold vortex enhances rapidly. The sharp enhancement of vorticity factor over surface cyclones is beneficial to the explosive development of cyclones. The potential vorticity diagnosis on the isobaric surface shows that the abnormal area of positive potential vorticity gradually approaches and superimposes on the middle and low-level system, with the continuous southward development and downward propagation of stratospheric high-level vorticity along the isentropic surface, resulting in the rapid development and downward extension of middle-level cold vorticity and thereby the explosive enhancement of surface cyclones. In addition, the slow downward propagation of potential vorticity is also conducive to the maintenance of occluding stage in the frontal cyclone.
-
图 1 2021年11月6日08:00—9日08:00累积降水量(填色)(a)及11月9日08:00积雪深度(填色)(b)
(黑色圆点为通辽站, 下同)
Fig. 1 The accumulative precipitation from 0800 BT 6 Nov to 0800 BT 9 Nov in 2021(the shaded)(a), the snowfall depth at 0800 BT 9 Nov 2021(the shaded)(b)
(the black dot denotes the location of Tongliao Station, the same hereinafter)
图 6 2021年11月7—9日涡度(填色)和垂直速度(虚线,单位:Pa·s-1)沿850 hPa低涡中心垂直剖面
(△表示850 hPa低涡中心所在经度位置, 下同)
Fig. 6 Cross-section of vorticity(the shaded) and vertical velocity(the dotted line, unit:Pa·s-1) along 850 hPa vortex center from 7 Nov to 9 Nov in 2021
(△ denotes the longitude of 850 hPa vortex center, the same hereinafter)
-
[1] Bosart L F, Lin S C. A diagnostic analysis of the President' Day storm of February 1979.Mon Wea Rev, 1984, 112(11):2148-2177. doi: 10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2 [2] Braham R R Jr. The midwest snow storm of 8-11 December 1977. Mon Wea Rev, 1983, 111(2): 253-272. doi: 10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2 [3] Sanders F, Gyakum J R. Synoptic dynamic climatology of the "Bomb". Mon Wea Rev, 1980, 108(10): 1589-1606. doi: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2 [4] Ninomiya K. Polar low development over the east coast of Asian continent on 9-11 December 1985. J Meteor Soc Japan, 1991, 69(6): 669-685. doi: 10.2151/jmsj1965.69.6_669 [5] 孙建华, 赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析. 气候与环境研究, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htmSun J H, Zhao S X. Multi-scale systems and conceptual model on freezing rain and snow storm over southern China during January-February 2008. Climatic and Environmental Research, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm [6] 叶晨, 王建捷, 张文龙. 北京2009年"1101"暴雪的形成机制. 应用气象学报, 2011, 22(4): 398-410. doi: 10.3969/j.issn.1001-7313.2011.04.002Ye C, Wang J J, Zhang W L. Formation mechanism of the snowstorm over Beijing in early winter of 2009. J Appl Meteor Sci, 2011, 22(4): 398-410. doi: 10.3969/j.issn.1001-7313.2011.04.002 [7] 李津, 赵思雄, 孙建华. 一次华北破纪录暴雪成因的分析研究. 气候与环境研究, 2017, 22(6): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201706004.htmLi J, Zhao S X, Sun J H. Analysis of a record heavy snowfall event in North China. Climatic and Environmental Research, 2017, 22(6): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201706004.htm [8] 杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻"天气过程锋区特征分析. 气象学报, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htmYang G M, Mao D Y, Kong Q. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm [9] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [10] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [11] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [12] 罗辉, 肖递祥, 匡秋明, 等. 四川盆地暖区暴雨的雷达回波特征及分类识别. 应用气象学报, 2020, 31(4): 460-470. doi: 10.11898/1001-7313.20200408Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi: 10.11898/1001-7313.20200408 [13] 张迎新, 侯瑞钦, 张守保. 回流暴雪过程的诊断分析和数值试验. 气象, 2007, 33(9): 25-32. doi: 10.3969/j.issn.1000-0526.2007.09.004Zhang Y X, Hou R Q, Zhang S B. Numerical experiment and disgnosis on a heavy snow of return flow events. Meteor Mon, 2007, 33(9): 25-32. doi: 10.3969/j.issn.1000-0526.2007.09.004 [14] 王迎春, 钱婷婷, 郑永光. 北京连续降雪过程分析. 应用气象学报, 2004, 15(1): 58-65. doi: 10.3969/j.issn.1001-7313.2004.01.007Wang Y C, Qian T T, Zheng Y G. Primary analysis of the longest-lasting snowfall in Beijing. J Appl Meteor Sci, 2004, 15(1): 58-65. doi: 10.3969/j.issn.1001-7313.2004.01.007 [15] 蒋建莹, 史历, 倪允琪. 一次"高影响天气"的弱降雪过程的数值研究. 应用气象学报, 2005, 16(2): 231-237. doi: 10.3969/j.issn.1001-7313.2005.02.012Jiang J Y, Shi L, Ni Y Q. A simulation of a high impact weather event. J Appl Meteor Sci, 2005, 16(2): 231-237. doi: 10.3969/j.issn.1001-7313.2005.02.012 [16] 杨成芳, 李泽椿, 周兵, 等. 渤海南部沿海冷流暴雪的中尺度特征. 南京气象学院学报, 2007, 30(6): 857-865. doi: 10.3969/j.issn.1674-7097.2007.06.018Yang C F, Li Z C, Zhou B, et al. Mesoscale analysis of ocean-effect snowstorms in the south coastland of Bohai Sea. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 857-865. doi: 10.3969/j.issn.1674-7097.2007.06.018 [17] 于志良. 胶东半岛冷流降雪与海气湍流感热输送的关系. 气象学报, 1998, 56(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB801.011.htmYu Z L. The relation between cold flow snowfall and sea-air sensible heat transportation in Jiaodong Peninsula. Acta Meteor Sinica, 1998, 56(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB801.011.htm [18] 周淑玲, 丛美环, 吴增茂, 等. 2005年12月3—21日山东半岛持续性暴雪特征及维持机制. 应用气象学报, 2008, 19(4): 444-453. doi: 10.3969/j.issn.1001-7313.2008.04.008Zhou S L, Cong M H, Wu Z M, et al. Characteristics and maintaining mechanisms of sustained cold-air outbreak snowstorm processes in Shandong Peninsula during December 3-21, 2005. J Appl Meteor Sci, 2008, 19(4): 444-453. doi: 10.3969/j.issn.1001-7313.2008.04.008 [19] 崔宜少, 张丰启, 李建华, 等. 2005年山东半岛连续三次冷流暴雪过程的分析. 气象科学, 2008, 28(4): 395-401. doi: 10.3969/j.issn.1009-0827.2008.04.007Cui Y S, Zhang F Q, Li J H, et al. The analyses of three snowstorm processes on Shandong Peninsula in 2005. J Meteor Sci, 2008, 28(4): 395-401. doi: 10.3969/j.issn.1009-0827.2008.04.007 [20] 王文, 程麟生. "96.1"高原暴雪过程横波型不稳定的数值研究. 应用气象学报, 2000, 11(4): 392-399. doi: 10.3969/j.issn.1001-7313.2000.04.002Wang W, Cheng L S. Numerical study of transversal wave instability for the "96.1" snowstorm event. J Appl Meteor Sci, 2000, 11(4): 392-399. doi: 10.3969/j.issn.1001-7313.2000.04.002 [21] 王建中, 丁一汇. 一次华北强降雪过程的湿对称性研究. 气象学报, 1995, 53(4): 451-459. doi: 10.3321/j.issn:0577-6619.1995.04.003Wang J Z, Ding Y H. Research of moist symmetric instability in a strong snowfall in North China. Acta Meteor Sinica, 1995, 53(4): 451-459. doi: 10.3321/j.issn:0577-6619.1995.04.003 [22] 陈涛, 崔彩霞. "2010.1.6 "新疆北部特大暴雪过程中的锋面结构及降水机制. 气象, 2012, 38(8): 921-931. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201208006.htmChen T, Cui C X. The frontal structure and precipitation mechanism in the 6 January 2010 heavy snowfall event happening in North Xinjiang. Meteor Mon, 2012, 38(8): 921-931. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201208006.htm [23] 盛春岩, 杨晓霞. 一次罕见的山东暴雪天气的对称不稳定分析. 气象, 2002, 28(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200203007.htmSheng C Y, Yang X X. Symmetry instability analysis of an unusual storm snow in Shandong Province. Meteor Mon, 2002, 28(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200203007.htm [24] 张腾飞, 鲁亚斌, 张杰, 等. 2000年以来云南4次强降雪过程的对比分析. 应用气象学报, 2007, 18(1): 64-72. doi: 10.3969/j.issn.1001-7313.2007.01.009Zhang T F, Lu Y B, Zhang J, et al. Contrast analysis of 4 heavy snow events in Yunnan since 2000. J Appl Meteor Sci, 2007, 18(1): 64-72. doi: 10.3969/j.issn.1001-7313.2007.01.009 [25] 范俊红, 易笑园. 大范围持续暴雪过程中多种影响系统的对比分析. 气象学报, 2019, 77(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906001.htmFan J H, Yi X Y. Comparative analysis of several influencing systems in the process of alarge-scale continuous snowstorm. Acta Meteor Sinica, 2019, 77(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906001.htm [26] 王丽荣, 汤达章, 胡志群, 等. 多普勒雷达的速度图像特征及其在一次降雪过程中的应用. 应用气象学报, 2006, 17(4): 452-457. doi: 10.3969/j.issn.1001-7313.2006.04.009Wang L R, Tang D Z, Hu Z Q, et al. The Doppler radar velocity image features and its application in a snowfall process. J Appl Meteor Sci, 2006, 17(4): 452-458. doi: 10.3969/j.issn.1001-7313.2006.04.009 [27] 迟竹萍, 龚佃利. 山东一次连续性降雪过程云微物理参数数值模拟研究. 气象, 2006, 32(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607003.htmChi Z P, Gong D L. A numerical simulation of cloud microphysics parameters for sustaining snowfall in Shandong Province. Meteor Mon, 2006, 32(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607003.htm [28] 孙晶, 王鹏云, 李想, 等. 北方两次不同类型降雪过程的微物理模拟研究. 气象学报, 2007, 65(1): 29-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200701002.htmSun J, Wang P Y, Li X, et al. Numerical study on microphysical processes of two different snowfall cases in North China. Acta Meteor Sinica, 2007, 65(1): 29-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200701002.htm [29] 王洪庆, 张焱, 陶祖钰, 等. 黄海气旋数值模拟的可视化应用. 应用气象学报, 2000, 11(3): 282-286. http://qikan.camscma.cn/article/id/20000343Wang H Q, Zhang Y, Tao Z Y, et al. Visualization of the numerical simulation of a Yellow Sea cyclone. J Appl Meteor Sci, 2000, 11(3): 282-286. http://qikan.camscma.cn/article/id/20000343 [30] 张伟, 陶祖钰, 胡永云, 等. 气旋发展中平流层空气干侵入现象分析. 北京大学学报(自然科学版), 2006, 42(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200601011.htmZhang W, Tao Z Y, Hu Y Y, et al. A study on the dry intrusion of air flows from the lower stratosphere in a cyclone development. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200601011.htm [31] 王达文. 东亚大陆东岸的倒暖锋. 气象, 1975, 1(10): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197510002.htmWang D W. An inverted warm front along the east coast of East Asia. Meteor Mon, 1975, 1(10): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197510002.htm [32] 熊秋芬, 张玉婷, 姜晓飞, 等. 锢囚气旋钩状云区暴雪过程的水汽源地及输送分析. 气象, 2018, 44(10): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810003.htmXiong Q F, Zhang Y T, Jiang X F, et al. Analysis of moisture source and transport of snowstorm in hooked cloud area of an occluded cyclone. Meteor Mon, 2018, 44(10): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810003.htm [33] 蔡丽娜, 隋迎玖, 刘大庆, 等. 一次爆发性气旋引发的罕见暴风雪过程分析. 北京大学学报(自然科学版), 2009, 45(4): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200904026.htmCai L N, Sui Y J, Liu D Q, et al. Analysis on an unusual snowstorm event caused by explosive cyclone. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(4): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200904026.htm [34] 刘宁微, 齐琳琳, 韩江文. 北上低涡引发辽宁历史罕见暴雪天气过程的分析. 大气科学, 2009, 33(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902007.htmLiu N W, Qi L L, Han J W. The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China. Chinese J Atmos Sci, 2009, 33(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902007.htm [35] 赵宇, 朱皓清, 蓝欣, 等. 基于CloudSat资料的北上江淮气旋暴雪云系结构特征. 地球物理学报, 2018, 61(12): 4789-4804. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812007.htmZhao Y, Zhu H Q, Lan X, et al. Structure of the snow storm cloud associated with northward Jianghuai cyclone based on CloudSat satellite data. Chinese J Geophys, 2018, 61(12): 4789-4804. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812007.htm [36] 王东海, 端义宏, 刘英, 等. 一次秋季温带气旋的雨雪天气过程分析. 气象学报, 2013, 71(4): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304003.htmWang D H, Duan Y H, Liu Y, et al. A case study of the mixed rainfall-snowfall event associated with an extratropical cyclone in autumn. Acta Meteor Sinica, 2013, 71(4): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304003.htm [37] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展. 气象学报, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htmWu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm [38] 寿绍文. 位涡理论及其应用. 气象, 2010, 36(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201003004.htmShou S W. Theory and application of the potential vorticity. Meteor Mon, 2010, 36(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201003004.htm [39] 黄立文, 仪清菊, 秦曾濒, 等. 西北太平洋温带气旋爆发性发展的热力-动力学分析. 气象学报, 1999, 57(5): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905007.htmHuang L W, Yi Q J, Qin Z B, et al. Dynamics/thermdynamics diagnosis of explosive development of extratropical cyclones over the Northwestern Pacific Ocean. Acta Meteor Sinica, 1999, 57(5): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905007.htm [40] 郑永骏, 吴国雄, 刘屹岷. 涡旋发展和移动的动力和热力问题I: PV-Q观点. 气象学报, 2013, 71(2): 185-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302003.htmZheng Y J, Wu G X, Liu Y M. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view. Acta Meteor Sinica, 2013, 71(2): 185-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302003.htm [41] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146: 1999-2049. [42] Takaya K, Nakamura H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett, 1997, 24(23): 2985-2988. [43] Takaya K, Nakamura H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 2001, 58(6): 608-627.