Upper Wind Difference Characteristics and Forecast Within 3.5 Hours Before and After Rocket Launch
-
摘要: 利用2014年12月—2020年12月时间间隔为3.5 h的高空风实况分析火箭发射前后3.5 h内高空风差异, 并利用WRF模式和火箭发射前3 h高空风建立火箭发射后0.5 h高空风预报模型, 结果表明:火箭发射前后3.5 h内高空风速、风向差异特征, 与高度、季节及火箭发射前3 h平均高空风速有关。高空风最大风速偏差为-24.00~26.00 m·s-1, 风速偏差在10 m·s-1以内达三分之二, 且主要出现在对流层中高层[6.5 km, 11.5 km)高度内;最大风向绝对偏差范围为10.00°~180°, 主要集中在[30°, 60°)范围及对流层中低层[1.5 km, 6.5 km)高度内。火箭发射前后3.5 h内高空风速平均绝对偏差随火箭发射前3 h高空风速平均值增大呈增大趋势, 风速相对误差绝对值和风向绝对偏差则表现为减小趋势, 说明高空风强时, 风向不易发生短时变化;火箭发射前后3.5 h内高空风差异随季节变化与高空风的季节特征有关。利用火箭发射后0.5 h高空风预报模型, 有助于降低火箭飞行风险。Abstract: The upper wind has a major impact on the safety of the launch vehicle, and the wind speed 3 hours before launching is a determinant for the eventual schedule. If the maximum aerodynamic load generated by the upper wind does not exceed the threshold, the rocket can be launched as planned, otherwise it will be considered to postpone the launch. The deviation of the upper wind 3 hours before and at the launch time should be investigated. Taking the upper wind dataset with an interval of 3.5 hours (December 2014 to December 2020) to analyze the wind difference, and a forecast model for the wind of 0.5 hours after the launch is established using WRF model and the wind data of 3 hours before the launch. It shows that the characteristics of upper wind speed and direction difference within 3.5 hours are related to altitude, season, and the average upper wind speed. Although the maximum wind speed deviation range is -24.00-26.00 m·s-1, for two-thirds of the cases the deviation is within 10 m·s-1, which mainly occur in the middle and upper troposphere with altitude of [6.5 km, 11.5 km). The absolute value of the maximum wind direction deviation range is 10.00°-180°, mainly in the [30°, 60°) interval, and this mostly occurs in the middle and lower troposphere with altitude of [1.5 km, 6.5 km). The average absolute deviation of the upper wind speed within 3.5 hours shows an increasing trend with the increase of average upper wind speed 3 hours before the launch, but the relative error and the wind direction deviation decreases, indicating that when the upper wind is strong, the wind direction is less prone to short-term changes. The upper wind deviation within 3.5 hours varies with the seasons, for example, the absolute deviation of winter wind speed is greater than that of summer, but the absolute deviation of wind direction in winter is smaller than that of summer. Using the forecast model results of wind 0.5 hours after the launch can help to avoid the risk of rocket launch in advance.
-
图 7 火箭发射前后3.5 h内风速最大正偏差(a)、次大正偏差(b)、最大负偏差(c)和次大负偏差(d)的V1和V2变化特征
Fig. 7 Variation of V1 and V2 corresponding to the largest positive deviation(a), the second largest positive deviation(b), the largest negative deviation(c) and the second largest negative deviation(d) of wind speed within 3.5 hours before and after rocket launch
图 8 火箭发射前后3.5 h内风速最大正偏差(a)、次大正偏差(b)、最大负偏差(c)和次大负偏差(d)的V1,V2和Vf变化特征
Fig. 8 Variation of V1, V2 and Vf corresponding to the largest positive deviation(a), the second largest positive deviation(b), the largest negative deviation(c) and the second largest negative deviation(d) of wind speed within 3.5 hours before and after rocket launch
图 9 火箭发射前后3.5 h内高空风差异最大的20%样本的V1和Vf的偏差(a)、绝对偏差(b)、相对误差绝对值(c)、相关系数(d)随高度变化特征
Fig. 9 Variation of deviation(a), absolute deviation(b), absolute relative error(c), correlation coefficient(d) with height for 20% samples of V1 and Vf with the largest difference with 3.5 hours before and after rocket launch
表 1 资料1~资料5的V1, Vf与V2数理统计结果
Table 1 Mathematical statistics between V1, Vf and V2 of data 1 to data 5
资料 高空风 风速偏差/(m·s-1) 风速绝对偏差/(m·s-1) 风速相对误差绝对值/% 与V2相关系数 1 V1 -0.13 2.03 30.27 0.66 Vf 0.15 1.94 29.51 0.73 2 V1 -0.04 2.13 21.04 0.75 Vf 0.05 1.93 20.46 0.83 3 V1 -0.89 2.56 20.48 0.81 Vf -0.14 2.17 19.64 0.89 4 V1 -0.88 3.52 19.00 0.76 Vf -0.63 2.84 16.29 0.84 5 V1 0.50 4.51 25.39 0.75 Vf -0.22 3.07 20.56 0.79 -
[1] 李东, 杨云飞, 胡鹏翔, 等.运载火箭多体动力学建模与仿真技术研究.宇航学报, 2021, 42(2):141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202102002.htmLi D, Yang Y F, Hu P X, et al. Research on multibody dynamic modeling and simulation technology for launch vehicles. J Astronautics, 2021, 42(2): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202102002.htm [2] 程修妍, 荣吉利, 阿尼苏, 等. 火箭发动机超声速过膨胀射流气动噪声特性研究. 宇航学报, 2020, 41(9): 1204-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202009012.htmCheng X Y, Rong J L, A N S, et al. Aerodynamic noise characteristics of supersonic over expanded jet in rocket engine. J Astronautics, 2020, 41(9): 1204-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202009012.htm [3] 魏宗康, 高荣荣. 惯性测量系统火箭橇试验一维运动约束方法. 导弹与航天运载技术, 2020, 6(6): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202006008.htmWei Z K, Gao R R. A constrained method for one-dimension motion of inertial measurement system based on rocket sled testing. Missiles and Space Vehicles, 2020, 6(6): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202006008.htm [4] 马列波, 聂万胜. 隔板片数量对液体火箭发动机燃烧不稳定性的影响. 导弹与航天运载技术, 2020, 6(6): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202006006.htmMa L B, Nie W S. The influence of baffle number to the combustion instability of liquid rocket engine. Missiles and Space Vehicles, 2020, 6(6): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202006006.htm [5] 李文清, 王俊峰, 张志国, 等. 火箭适应发动机推力下降故障的弹道制导策略优化分析. 导弹与航天运载技术, 2020, 6(4): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202004014.htmLi W Q, Wang J F, Zhang Z G, et al. Optimization analysis of trajectory planning and guidance strategy of launch vehicle adapting to engine thrust declining fault. Missiles and Space Vehicles, 2020, 6(4): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202004014.htm [6] 程镇煌. 大型火箭风载试验. 上海航天, 1996(4): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT604.000.htmChen Z H. Wind load test for large rocket. Aerospace Shanghai, 1996(4): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT604.000.htm [7] 赵人濂, 陈振官, 付维贤. 风切变与运载火箭设计. 宇航学报, 1998, 19(2): 105-108.Zhao R L, Chen Z G, Fu W X. Wind shear and rocket design. J Astronautics, 1998, 19(2): 105-108. [8] 余梦伦. CZ-2E火箭高空风弹道修正. 导弹与航天运载技术, 2001(1): 9-15. doi: 10.3969/j.issn.1004-7182.2001.01.002Yu M L. CZ-2E ballistic correction for high altitude wind. Missiles and Space Vehicles, 2001(1): 9-15. doi: 10.3969/j.issn.1004-7182.2001.01.002 [9] 李效明, 许北辰, 陈存芸. 一种运载火箭减载控制工程方法. 上海航天, 2004(6): 7-14. doi: 10.3969/j.issn.1006-1630.2004.06.002Li X M, Xu B C, Chen C Y. An engineering method on the control of decreasing load for a launch vehicle. Aerospace Shanghai, 2004(6): 7-14. doi: 10.3969/j.issn.1006-1630.2004.06.002 [10] 耿光有, 李东. 由火箭一级飞行弹道分析底部力等动力参数. 导弹与航天运载技术, 2014(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htmGeng G Y, Li D. Analysis of dynamic parameters such as base-force for 1st stage of a launch vehicle via the trajectory. Missiles and Space Vehicles, 2014(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htm [11] 程胡华, 王益柏, 蔡其发, 等. 大气密度对运载火箭飞行的qαmax精度影响及建模分析. 宇航学报, 2021, 42(3): 378-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202103014.htmCheng H H, Wang Y B, Cai Q F, et al. Influence of atmospheric density on qαmax accuracy of launch vehicle flight and modeling analysis. J Astronautics, 2021, 42(3): 378-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202103014.htm [12] 程胡华, 李娟, 肖云清, 等. 风偏差对火箭最大气动载荷精度的影响与分析. 北京航空航天大学学报, 2021, 47(10): 2034-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202110012.htmCheng H H, Li J, Xiao Y Q, et al. Influence and analysis of wind deviation on rocket maximum aerodynamic load accuracy. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202110012.htm [13] 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征. 应用气象学报, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304 [14] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [15] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302 [16] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505Wang H, Li Y, Wen Y R. Observational characteristics of hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505 [17] 杨忠恩, 陈淑琴, 黄辉. 舟山群岛冬半年灾害性大风的成因与预报. 应用气象学报, 2007, 18(1): 80-85. doi: 10.3969/j.issn.1001-7313.2007.01.011Yang Z E, Chen S Q, Huang H. The causes of catastrophic gales in Zhoushan Islands with their forecasting. J Appl Meteor Sci, 2007, 18(1): 80-85. doi: 10.3969/j.issn.1001-7313.2007.01.011 [18] 全美兰, 刘海文, 朱玉祥, 等. 高空急流在北京"7.21"暴雨中的动力作用. 气象学报, 2013, 71(6): 1012-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201306002.htmQuan M L, Liu H W, Zhu Y X, et al. Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012. Acta Meteor Sinica, 2013, 71(6): 1012-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201306002.htm [19] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [20] 王黉, 李英, 宋丽莉, 等. 川藏地区雷暴大风活动特征和环境因子对比. 应用气象学报, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406 [21] 李娜, 冉令坤, 孙建华, 等. 基于NCEP/GFS资料的中国东部地区雷暴预报研究. 气象学报, 2015, 73(3): 459-470. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503004.htmLi N, Ran L K, Sun J H, et al. Research of the thunderstorm forecast in east China based on the NCEP/GFS data. Acta Meteor Sinica, 2015, 73(3): 459-470. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503004.htm [22] 邹振操, 邓院昌. 基于NCEP GFS与JMA GSM预报场的WRF模式风速预测效果对比. 水电能源科学, 2016, 34(1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201601050.htmZou Z C, Deng Y C. Comparison of wind speed prediction in WRF model based on NCEP GFS and JMA GSM forecasting fields. Water Resources and Power, 2016, 34(1): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201601050.htm [23] 姜文静, 梁旭东. 物理滤波初始化四维变分在临近预报中的应用. 应用气象学报, 2020, 31(5): 543-555. doi: 10.11898/1001-7313.20200503Jiang W J, Liang X D. Application of PFI-4DVar data assimilation technique to nowcasting of numerical model. J Appl Meteor Sci, 2020, 31(5): 543-555. doi: 10.11898/1001-7313.20200503 [24] 付烨, 刘晓莉, 丁伟. 一次冰雹过程及雹云物理结构的数值模拟研究. 热带气象学报, 2016, 32(4): 546-557. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201604012.htmFu Y, Liu X L, Ding W. A numerical simulation study of a severe hail event and physical structure of hail cloud. J Trop Meteor, 2016, 32(4): 546-557. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201604012.htm [25] 朱莉, 王曼, 李华宏, 等. 基于WRF模式的云南短时强降水物理量特征. 大气科学学报, 2019, 42(5): 755-768. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201905012.htmZhu L, Wang M, Li H H, et al. Analysis of physical quantity features of Yunnan short-time severe rainfall based on WRF model. Trans Atmos Sci, 2019, 42(5): 755-768. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201905012.htm [26] 刘郁珏, 苗世光, 刘磊, 等. 修正WRF次网格地形方案及其对风速模拟的影响. 应用气象学报, 2019, 30(1): 70-81. doi: 10.11898/1001-7313.20190107Liu Y J, Miao S G, Liu L, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. J Appl Meteor Sci, 2019, 30(1): 70-81. doi: 10.11898/1001-7313.20190107