留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两次强冰雹超级单体风暴双偏振特征对比

刁秀广 李芳 万夫敬

刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403..
引用本文: 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403.
Diao Xiuguang, Li Fang, Wan Fujing. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403.
Citation: Diao Xiuguang, Li Fang, Wan Fujing. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403.

两次强冰雹超级单体风暴双偏振特征对比

DOI: 10.11898/1001-7313.20220403
资助项目: 

山东省自然科学基金项目 ZR2020MD053

山东省气象局科研项目 2019sdqxz01

详细信息
    通信作者:

    刁秀广, 邮箱:radardxg@126.com

Comparative Analysis on Dual Polarization Features of Two Severe Hail Supercells

  • 摘要: 利用S波段双偏振天气雷达资料、探空和地面常规气象观测资料及灾情调查, 对2020年6月25日河北省蠡县和2021年7月9日山东省章丘的两次特大冰雹超级单体风暴双偏振特征进行对比。结果表明:两次超级单体风暴均发生在西北气流形势下, 章丘风暴具有较强的对流有效位能、较大的湿度和较高的湿球0℃层高度。蠡县风暴强度明显大于章丘风暴, 但差分反射率柱和比差分相移柱高度明显低于章丘风暴。蠡县风暴弱回波区上方存在深厚的强度超过65 dBZ强回波悬垂, 即悬垂的冰粒子循环增长产生较大的冰雹粒子, 大的冰雹粒子进入下降通道后, 再次产生明显增长且更加不规则, 导致更强的水平极化反射率因子和更小的相关系数。湿度的垂直分布是风暴发展强度的关键环境因素之一。蠡县超级单体风暴的产生环境非常干, 章丘超级单体风暴的产生环境相对较湿。
  • 图  1  降水量(数值,单位:mm)与大风(风羽)实况

    (a)2020年6月25日17:00—19:00,(b)2021年7月9日14:00—16:00

    Fig. 1  Observed precipitation(the value, unit:mm) and strong wind(the barb)

    (a)from 1700 BT to 1900 BT on 25 Jun 2020, (b) from 1400 BT to 1600 BT on 9 Jul 2021

    图  2  2020年6月25日08:00和2021年7月9日08:00位势高度(黑色实线,单位:dagpm)、温度场(红色虚线,单位:℃)和风场(风羽)

    Fig. 2  Geopotential height(the black solid line, unit:dagpm), temperature(the red dashed line, unit:℃) and wind(the barb) at 0800 BT 25 Jun 2020 and 0800 BT 9 Jul 2021

    图  3  2020年6月25日18:12石家庄雷达不同仰角的水平极化反射率因子、平均径向速度、差分反射率、比差分相移和相关系数

    (白色圆圈为中气旋)

    Fig. 3  Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Shijiazhuang radar at 1812 BT 25 Jun 2020

    (the white cycle denotes mesocyclone)

    图  4  2020年6月25日18:12石家庄雷达的水平极化反射率因子、差分反射率、比差分相移和相关系数沿74°径向垂直剖面

    (粉色、红色、白色和蓝色水平实线分别为湿球0℃层、0℃层、-10℃层和-20℃层高度)

    Fig. 4  Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 74° radial direction from Shijiazhuang radar at 1812 BT 25 Jun 2020

    (pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)

    图  5  2021年7月9日14:36济南雷达不同仰角的水平极化反射率因子、平均径向速度、差分反射率、比差分相移和相关系数

    (白色圆圈为中气旋, 黑色箭头为风暴移动方向)

    Fig. 5  Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Jinan radar at 1436 BT 9 Jul 2021

    (the white cycle denotes mesocyclone, the black arrow denotes the moving direction of supercell)

    图  6  2021年7月9日14:36济南雷达水平极化反射率因子、差分反射率、比差分相移和相关系数沿90°径向垂直剖面

    (粉色、红色、白色和蓝色水平实线分别为湿球0℃层高度、0℃层高度、-10℃层高度和-20℃层高度)

    Fig. 6  Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 90° radial direction from Jinan radar at 1436 BT 9 Jul 2021

    (pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)

    表  1  邢台和章丘探空环境物理量

    Table  1  Environmental physical parameters obtained by sounding of Xingtai and Zhangqiu

    物理量 邢台
    2020-06-25T08:00
    章丘
    2021-07-09T08:00
    K指数/℃ 11 30
    850 hPa和500 hPa的温差/℃ 29.6 29.3
    抬升指数/℃ -1.7 -6.3
    对流有效位能/(J·kg-1) 430(2400*) 2330(4550*)
    对流抑制能量/(J·kg-1) 470 0
    整层比湿积分/(g·kg-1) 2115 3206
    0~6 km风切变/(m·s-1) 16.4 19.5
    0~3 km风切变/(m·s-1) 10.6 16.6
    500 hPa风速/(m·s-1) 15 11
    500 hPa气温/℃ -11 -9
    注:*表示订正后的对流有效位能。
    下载: 导出CSV

    表  2  蠡县和章丘超级单体风暴参数平均值

    Table  2  Averaged values of storm parameters of supercells at Lixian and Zhangqiu

    参数 蠡县强风暴 章丘强风暴
    最大反射率因子/dBZ 77.1 65.6
    最大反射率因子所在高度/km 5.1(-5℃高度) 4.6(-3℃高度)
    风暴顶高/km 9.5(12.4*) 12.8(-47℃高度)
    基于单体的垂直积分液态水含量/(kg·m-2) 68.0 86.3
    差分反射率柱高度/km 8.0(-24℃高度) 11.4(-48℃高度)
    比差分相移柱高度/km 7.7(-22℃高度) 9.0(-32℃高度)
    最大旋转速度/(m·s-1) 19.4 20.2
    最大旋转速度所在高度/km 5.8 5.1
    风暴顶辐散强度/(m·s-1) 58.0 60.3
    注:*表示沧州雷达探测到的蠡县超级单体风暴顶高度。
    下载: 导出CSV
  • [1] Brande E A, Vivekanandan J, Tuttle J D, et al. A study of thunderstorm microphysics with multiparameter radar and aircraft observations.Mon Wea Rev, 1995, 123(11):3129-3143. doi:  10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2
    [2] McCaul E W Jr, Weisman M L. The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon Wea Rev, 2001, 129(4): 664-687. doi:  10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2
    [3] Beatty K, Rasmussen E N, Straka J M. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron J Severe Storms Meteor, 2008, 3(4): 1-21.
    [4] Broeke V D, Matthew S. Effects of mid- and upper-level drying on microphysics of simulated supercell storms. Electron J Severe Storms Meteor, 2014, 9(3): 1-29.
    [5] Davenport C E, Parker M D. Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon Wea Rev, 2015, 143(10): 4244-4277. doi:  10.1175/MWR-D-15-0072.1
    [6] Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge: Cambridge University Press, 2001.
    [7] Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi:  10.1175/2007JAMC1874.1
    [8] Kumjian M R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Operational Meteor, 2013, 1(19): 226-242. doi:  10.15191/nwajom.2013.0119
    [9] Herzegh P, Jameson A R. Observing precipitation through dual-polarization radar measurements. Bull Amer Meteor Soc, 1992, 73(9): 1365-1374. doi:  10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2
    [10] Conway J W, Zrnic D S. A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon Wea Rev, 1993, 121(9): 2511-2528. doi:  10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2
    [11] Ryzhkov A V, Zhuravlyov V B, Rybakova N A. Preliminary results of X-band polarization radar studies of clouds and precipitation. J Atmos Oceanic Technol, 1994, 11(1): 132-139. doi:  10.1175/1520-0426(1994)011<0132:PROXBP>2.0.CO;2
    [12] Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786. doi:  10.1175/2010MWR3322.1
    [13] Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490. doi:  10.1175/JAS-D-12-067.1
    [14] Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060. doi:  10.1175/JAS-D-11-0125.1
    [15] Dawson D T, Mansell E R, Jung Y, et al. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J Atmos Sci, 2014, 71(1): 276-299. doi:  10.1175/JAS-D-13-0118.1
    [16] Dawson D T, Mansell E R, Kumjian M R. Does wind shear cause hydrometeor size sorting?. J Atmos Sci, 2015, 72(1): 340-348. doi:  10.1175/JAS-D-14-0084.1
    [17] Broeke V D, Matthew S. Polarimetric variability of classic supercell storms as a function of environment. J Appl Meteor Climatol, 2016, 55(9): 1907-1925. doi:  10.1175/JAMC-D-15-0346.1
    [18] Bringi V N, Liu L, Kennedy P C, et al. Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor Atmos Phys, 1996, 59(1): 3-31.
    [19] Hubbert J C, Carey L D, Bolen S. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J Appl Meteor, 1998, 37(8): 749-775. doi:  10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2
    [20] Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194. doi:  10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2
    [21] Romine G S, Burgess D W, Wilhelmson R B. A dual-polarization-radarbased assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon Wea Rev, 2008, 136(8): 2849-2870. doi:  10.1175/2008MWR2330.1
    [22] Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅱ: Warm- and cold-season applications. J Operational Meteor, 2013, 1(20): 243-264. doi:  10.15191/nwajom.2013.0120
    [23] 王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析. 气象学报, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm

    Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polarimetric radar observations of a hailproducing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
    [24] 潘佳文, 魏鸣, 郭丽君, 等. 闽南地区大冰雹超级单体演变的双偏振特征分析. 气象, 2020, 46(12): 1608-1620. doi:  10.7519/j.issn.1000-0526.2020.12.008

    Pan J W, Wei M, Guo L J, et al. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in Southern Fujian. Meteor Mon, 2020, 46(12): 1608-1620. doi:  10.7519/j.issn.1000-0526.2020.12.008
    [25] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [26] 高丽, 潘佳文, 蒋璐璐, 等. 一次长生命史超级单体降雹演化机制及双偏振雷达回波分析. 气象, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm

    Gao L, Pan J W, Jiang L L, et al. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long life supercell. Meteor Mon, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm
    [27] 贺晓露, 杨涛, 李格, 等. 鄂北一次超级对流单体的双偏振雷达特征分析. 气象科技, 2021, 49(6): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202106012.htm

    He X L, Yang T, Li G, et al. Dual-polarization characteristics analysis of a supercell in Northern Hubei. Meteor Sci Technol, 2021, 49(6): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202106012.htm
    [28] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析. 气象学报, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm

    Diao X G, Guo F Y. Analysis of polarimetric signatures in the supercell thunderstorm occurred in Zhucheng on 16 August 2019. Acta Meteor Sinica, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm
    [29] 刁秀广, 杨传凤, 张骞, 等. 二次长寿命超级单体风暴参数与ZDR柱演变特征分析. 高原气象, 2021, 40(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103011.htm

    Diao X G, Yang C F, Zhang Q, et al. Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells. Plateau Meteor, 2021, 40(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103011.htm
    [30] Balakrishnan N, Zrnic D S. Use of polarization to characterize precipitation and discriminate large hail. J Atmos Sci, 47(13): 1525-1540. doi:  10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2
    [31] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [32] 杨磊, 贺宏兵, 杨波, 等. 基于S波段双线偏振天气雷达的降水粒子相态识别. 气象与环境学报, 2019, 35(4): 127-132. doi:  10.3969/j.issn.1673-503X.2019.04.018

    Yang L, He H B, Yang B, et al. Identification of hydrometeors based on S-band dual-polarimetric radar measurement. J Meteor Environ, 2019, 35(4): 127-132. doi:  10.3969/j.issn.1673-503X.2019.04.018
    [33] 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206

    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [34] 潘佳文, 高丽, 魏鸣, 等. 基于S波段双偏振雷达观测的雹暴偏振特征分析. 气象学报, 2021, 79(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101012.htm

    Pan J W, Gao L, Wei M, et al. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica, 2021, 79(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101012.htm
    [35] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309

    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [36] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [37] 郑永光, 陶祖钰, 俞小鼎. 强对流天气预报的一些基本问题. 气象, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm

    Zheng Y G, Tao Z Y, Yu X D. Some essential issues of severe convective weather forecasting. Meteor Month, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm
    [38] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505

    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [39] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210

    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [40] Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅲ: Artifacts. J Operational Meteor, 2013, 1(21): 265-274. doi:  10.15191/nwajom.2013.0121
    [41] 刁秀广. 2020年5月17日和6月1日山东强冰雹风暴双极化特征分析. 海洋气象学报, 41(1): 68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202101007.htm

    Diao X G. Dual-polarization characteristics of severe hail storms in Shandong on 17 May and 1 June 2020. J Marine Meteor, 2021, 41(1): 68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202101007.htm
    [42] 王一童, 王秀明, 俞小鼎. 产生致灾大风的超级单体回波特征. 应用气象学报, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205

    Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205
    [43] 郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602

    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
  • 加载中
图(6) / 表(2)
计量
  • 摘要浏览量:  1306
  • HTML全文浏览量:  182
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-05-27
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回