留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C-FMCW雷达反演飑线大气垂直速度和雨滴谱

陈绍婕 郑佳锋 杨吉 车玉章 任涛 黄轩

陈绍婕, 郑佳锋, 杨吉, 等. C-FMCW雷达反演飑线大气垂直速度和雨滴谱. 应用气象学报, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404..
引用本文: 陈绍婕, 郑佳锋, 杨吉, 等. C-FMCW雷达反演飑线大气垂直速度和雨滴谱. 应用气象学报, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404.
Chen Shaojie, Zheng Jiafeng, Yang Ji, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404.
Citation: Chen Shaojie, Zheng Jiafeng, Yang Ji, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404.

C-FMCW雷达反演飑线大气垂直速度和雨滴谱

DOI: 10.11898/1001-7313.20220404
资助项目: 

国家重点研发计划 2018YFC1507005

江苏省气象科学研究所北极阁基金项目 BJG201901

成都信息工程大学人才引进项目 KYTZ201728

详细信息
    通信作者:

    郑佳锋, 通信作者, 邮箱: zjf1988@cuit.edu.cn

Retrieval of Air Vertical Velocity and Droplet Size Distribution in Squall Line Precipitation Using C-FMCW Radar

  • 摘要: 垂直指向探测的C波段调频连续波雷达具有高灵敏度和高时空分辨率等特点, 以2016年5月广东两次飑线降水为例, 结合同址K波段微雨雷达和地面激光雨滴谱仪, 探究C波段调频连续波雷达两种反演大气垂直速度(Va)和雨滴谱的方法:粒子平均下落末速度(Vt)-反射率因子(Ze)关系法(简称经验关系法)和小粒子示踪法(简称示踪法)。结果表明:经验关系法和示踪法反演的上升和下沉气流的时空分布基本一致;当地面雨强R≤1 mm·h-1, 经验关系法反演的雨滴谱与雨滴谱仪观测结果更接近;当1<R≤10 mm·h-1时, 两种方法反演的雨滴谱均与雨滴谱仪观测及微雨雷达产品较吻合;当R>10 mm·h-1时, 两种方法反演的中雨滴数浓度与雨滴谱仪观测结果接近, 但大雨滴数浓度较低;从各物理量时序变化看, 经验关系法反演结果更接近雨滴谱仪观测结果。
  • 图  1  2016年5月15日飑线后部弱对流降水观测及反演结果

    (a)C-FMCW雷达反射率因子Ze, (b)经验关系法反演的大气垂直速度Va, (c)示踪法反演的大气垂直速度Va, (d)经验关系法反演的粒子群平均下落末速度Vt, (e)示踪法反演的粒子群平均下落末速度Vt, (f)雨滴谱仪观测的雨滴谱和雨强R

    Fig. 1  Weak convective precipitation after the squall line passing on 15 May 2016

    (a)C-FMCW reflectivity factor(Ze), (b)air vertical velocity(Va) retrieved by the empirical relation method, (c)air vertical velocity retrieved(Va) by the small-particle-trace method, (d)mean particle falling velocity(Vt) retrieved by the empirical relation method, (e)mean particle falling velocity(Vt) retrieved by the small-particle-trace method, (f)droplet size distribution and rain rate(R) measured by disdrometer

    图  2  2016年5月15日不同雨强下的平均雨滴谱

    (a)0<R≤0.2 mm·h-1,(b)0.2<R≤1 mm·h-1,(c)R>1 mm·h-1

    Fig. 2  Mean droplet size distribution under three rain rate conditions on 15 May 2016

    (a)0<R≤0.2 mm·h-1, (b)0.2<R≤1 mm·h-1, (c)R>1 mm·h-1

    图  3  2016年5月15日19:43—21:20 3个设备物理量对比

    Fig. 3  Comparison of physical parameters for three instruments from 1943 BT to 2120 BT on 15 May 2016

    图  4  2016年5月6日飑线过境强对流降水观测及反演结果

    (a)C-FMCW雷达的反射率因子Ze,(b)经验关系法反演的大气垂直速度Va,(c)示踪法反演的大气垂直速度Va,(d)经验关系法反演的粒子群平均下落末速度Vt,(e)示踪法反演的粒子群平均下落末速度Vt,(f)雨滴谱仪观测的雨滴谱和雨强R

    Fig. 4  Strong convective precipitation of the squall line passing on 6 May 2016

    (a)C-FMCW reflectivity factor(Ze), (b)air vertical velocity(Va) retrieved by the empirical relation method, (c)air vertical velocity(Va) retrieved by the small-particle-trace method, (d)mean particle falling velocity(Vt) retrieved by the empirical relation method, (e)mean particle falling velocity(Vt) retrieved by the small-particle-trace method, (f)droplet size distribution and rain rate(R) measured by disdrometer

    图  5  2016年5月6日不同雨强下的平均雨滴谱

    (a)0<R≤1 mm·h-1,(b)1<R≤10 mm·h-1,(c)R>10 mm·h-1

    Fig. 5  Mean droplet size distribution under three rain rate conditions on 6 May 2016

    (a)0<R≤1 mm·h-1, (b)1<R≤10 mm·h-1, (c)R>10 mm·h-1

    图  6  2016年5月6日18:00—21:41 3个设备物理量对比

    Fig. 6  Comparison of physical parameters for three instruments from 1800 BT to 2141 BT on 6 May 2016

  • [1] Waldteufel P, Corbin H. On the analysis of single-Doppler radar data.J Appl Meteor Climatol,1979,18(4):532-542. doi:  10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2
    [2] 李渝, 马舒庆, 杨玲, 等. 长沙机场阵列天气雷达风场验证. 应用气象学报, 2020, 31(6): 681-693. doi:  10.11898/1001-7313.20200604

    Li Y, Ma S Q, Yang L, et al. Wind field verification for array weather radar at Changsha Airport. J Appl Meteor Sci, 2020, 31(6): 681-693. doi:  10.11898/1001-7313.20200604
    [3] 管理, 戴建华, 陶岚, 等. QVP方法在双偏振雷达冬季降水观测中的应用. 应用气象学报, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108

    Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation. J Appl Meteor Sci, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108
    [4] 林晓萌, 尉英华, 陈宏, 等. 降水时风廓线雷达风场反演效果评估. 应用气象学报, 2020, 31(3): 361-372. doi:  10.11898/1001-7313.20200310

    Lin X M, Wei Y H, Chen H, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. doi:  10.11898/1001-7313.20200310
    [5] Stokes G M, Schwartz S E. The Atmospheric Radiation Measurement(ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull Amer Meteor Soc, 1994, 75(7): 1201-1222. doi:  10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2
    [6] 阮征. 基于雷达资料的降水云微物理参数反演及垂直结构研究. 南京: 南京信息工程大学, 2015.

    Ruan Z. Microphysical Characteristics and Vertical Structure of Precipitation from Radar Observations. Nanjing: Nanjing University of Information Science & Technology, 2015.
    [7] Gossard E E, Strauch R O, Rogers R R. Evolution of dropsize distributions in liquid precipitation observed by ground-based Doppler radar. J Atmos Ocean Technol, 1990, 7(6): 815-828. doi:  10.1175/1520-0426(1990)007<0815:EODDIL>2.0.CO;2
    [8] Shupe M D, Intrieri J M. Cloud radiative forcing of the arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J Climate, 2004, 17(3): 616-628. doi:  10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
    [9] Zheng J F, Liu L P, Zhu K Y, et al. A method for retrieving vertical air velocities in convective clouds over the Tibetan Plateau from TIPEX-III cloud radar Doppler spectra. Remote Sensing, 2017, 9(9): 964. doi:  10.3390/rs9090964
    [10] Cui Y, Ruan Z, Wei M, et al. Vertical structure and dynamical properties during snow events in middle latitudes of China from observations by the C-band vertically pointing radar. J Meteor Soc Japan Ser II, 2020, 98(3): 527-550. doi:  10.2151/jmsj.2020-028
    [11] Ma N K, Liu L P, Chen Y C, et al. Analysis of the vertical air motions and raindrop size distribution retrievals of a squall line based on cloud radar Doppler spectral density data. Atmosphere, 2021, 12(3): 348. doi:  10.3390/atmos12030348
    [12] 霍朝阳. 基于C波段调频连续波垂直指向雷达的华南夏季降水云垂直结构特征及降水微物理研究. 南京: 南京信息工程大学, 2019.

    Huo Z Y. The Vertical Structural of Precipitation Cloud and Microphysics of Precipitation in South China Summer Based on the VPR-CFMCW. Nanjing: Nanjing University of Information Science & Technology, 2019.
    [13] 金龙, 阮征, 葛润生, 等. C-FMCW雷达对江淮降水云零度层亮带探测研究. 应用气象学报, 2016, 27(3): 312-322. doi:  10.11898/1001-7313.20160306

    Jin L, Ruan Z, Ge R S, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. doi:  10.11898/1001-7313.20160306
    [14] 阮征, 金龙, 葛润生, 等. C波段调频连续波天气雷达探测系统及观测试验. 气象学报, 2015, 73(3): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503014.htm

    Ruan Z, Jin L, Ge R S, et al. The C-band FMCW pointing weather radar system and its observation experiment. Acta Meteor Sinica, 2015, 73(3): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503014.htm
    [15] 宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究. 应用气象学报, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408

    Song C, Zhou Y Q, Wu Z H, et al. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [16] Peters G, Fischer B, Andersson T. Rain observations with a vertically looking micro rain radar(MRR). Boreal Environment Research, 2002, 7(4): 353-362.
    [17] Loöffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Ocean Technol, 2000, 17(2): 130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [18] 曾正茂, 郑佳锋, 杨晖, 等. Ka波段云雷达非云回波质量控制及效果评估. 应用气象学报, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307

    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307
    [19] Monique P, Amadou S, Garrouste A, et al. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Science, 1997, 32(3): 1229-1247. doi:  10.1029/97RS00250
    [20] 郑佳锋. Ka波段-多模式亳米波雷达功率谱数椐处理方法及云内大气垂直速度反演研究. 南京: 南京信息工程大学, 2016.

    Zheng J F. Doppler Spectral Data Proccessing Methods of Ka-band Multi-mode mm-wave Radar and Air Vertical Speed Retrieval in Clouds. Nanjing: Nanjing University of Information Science & Technology, 2016.
    [21] Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air. J Atmos Sci, 1949, 6(4): 243-248.
    [22] Foote G B, Du Toit P S. Terminal velocity of raindrops aloft. J Appl Meteor, 1969, 8(2): 249-253. doi:  10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
    [23] 马宁堃. 利用Ka波段毫米波雷达功率谱反演云降水大气垂直速度和雨滴谱分布研究. 北京: 中国气象科学研究院, 2019.

    Ma N K. Application of Doppler Spectral Density Data in Vertical Air Motions and Drop Size Distribution Retrieval in Cloud and Precipitation by Ka-band. Beijing: Chinese Academy of Meteorological Sciences, 2019.
    [24] 董佳阳, 崔晔, 阮征, 等. 对流降水云中大气垂直运动反演及个例试验. 应用气象学报, 2022, 33(2): 167-179. doi:  10.11898/1001-7313.20220204

    Dong J Y, Cui Y, Ruan Z, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. doi:  10.11898/1001-7313.20220204
    [25] 金棋, 袁野, 纪雷, 等. 安徽滁州夏季―次飚线过程的雨滴谱特征. 应用气象学报, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609

    Jin Q, Yuan Y, Ji L, et al. Characteristics of raindrop size distribution for a squall line at Chuzhou of Anhui during summer. J Appl Meteor Sci, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609
    [26] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604

    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
  • 加载中
图(6)
计量
  • 摘要浏览量:  825
  • HTML全文浏览量:  90
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-05-12
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回