Freezing Injury of Winter Wheat in Northern China and Delaying Sowing Date to Adapt
-
摘要: 全球变暖背景下, 我国北方冬麦区冬季冻害是否仍是主要气象灾害,冬小麦播期延迟是否能作为应对气候变化的措施,成为当前亟待解决的科学问题。研究表明:1981—2000年北方冬麦区偏北地区冬季冻害指数与冬小麦减产率相关系数为0.62(达到0.001显著性水平),即2000年前冬季冻害是冬小麦减产的主要气象灾害之一;2000年后冻害与冬小麦减产率相关不显著,即冬季冻害已不再是冬小麦减产的主要影响因子。2018—2021年的冬小麦分期播种试验分析表明:山东泰安和陕西咸阳主栽的冬小麦品种播期推迟,冬前积温和生长季积温明显减少,导致冬小麦植株高度、地上总干重和叶面积指数减小;播期推迟对产量结构造成不利影响,有效穗数、穗粒数和千粒重均分别减少,导致减产,播期推迟10 d平均减产22%,推迟20 d平均减产40%。因此,冬小麦推迟播期并未产生积极效应, 可能原因是当前冬小麦播期和主栽的冬小麦品种已适应当地气候变化。Abstract: Under the background of global warming, whether freezing injury is still the main meteorological disaster in northern winter wheat growing region of China becomes uncertain, and whether delaying sowing date is an effective measurement to adapt to climate change becomes an urgent scientific problem to solve. It is found that the correlation coefficient between winter freezing injury index and winter wheat yield reduction rate is 0.62 in the northern winter wheat region from 1981 to 2000, which indicates that winter freezing injury is one of the main disasters before the year of 2000. However, this correlation becomes very low after the year of 2000, indicating that winter freezing injury is no longer the main factor for yield reduction of winter wheat. Experiments are carried out at Taian and Xianyang stations, showing that the accumulated temperature before winter and the accumulated temperature of the whole growth season of winter wheat are significantly reduced. The plant height, total aboveground dry weight and leaf area index will decrease when sowing date of winter wheat is delayed for 10 days and 20 days. Furthermore, the delay of sowing date has an adverse impact on the yield structure, the effective panicles and grains per panicle are decreased by 5% and 10.2% respectively when the sowing date of winter wheat is delayed for 10 days from 2018 to 2021 at Taian Station, and they are decreased by 17.2% and 11.9% respectively when the sowing date is delayed for 10 days at Xianyang Station. Overall, the average yield of winter wheat is reduced by 22% and 40% when sowing dates are delayed for 10 days and 20 days respectively, which indicates that the delayed sowing date of winter wheat have no positive effects. The possible cause is that the local winter wheat varieties have changed at Xianyang and Taian, and farmers have appropriately adjusted the sowing date according to experience. The current winter wheat sowing date and the main winter wheat varieties have adapted to local climate change.
-
表 1 2018—2021年咸阳站冬小麦正常播期和推迟播期积温和产量要素变化
Table 1 Accumulated temperature and yield of winter wheat for nornal sowing date and sowing date delaying for 10 days and 20 days at Xianyang Station from 2018 to 2021
参量 推迟日数/d 2018年 2019年 2020年 2021年 2018—2021年平均 冬前积温/(℃·d) 0 448.2 504.1 531.9 440.4 494.7 10 312.0 366.2 397.0 311.3 358.4 20 196.4 225.5 254.8 196.6 225.6 生长季积温/(℃·d) 0 2136.1 2017.3 2087.2 2157.6 2080.2 10 2019.3 1904.0 1970.3 2028.5 1964.5 20 1881.8 1760.4 1802.5 1913.8 1814.9 有效穗数/m-2 0 565.0 920.0 463.3 481.7 607.5 10 453.3 723.3 375.0 460.0 502.9 20 401.7 435.0 378.3 425.0 410.0 穗粒数 0 22.7 15.6 33.6 31.9 26.0 10 28.6 14.1 18.6 30.4 22.9 20 28.6 8.8 16.7 23.4 19.4 千粒重/g 0 39.3 38.3 48.6 46.6 43.2 10 36.4 37.2 38.5 43.6 38.9 20 31.5 34.1 33.6 43.9 35.8 表 2 2018—2021年泰安站冬小麦正常播期和推迟播期积温和产量要素变化
Table 2 Accumulated temperature and yield of winter wheat for nornal sowing date and sowing date delaying for 10 days and 20 days at Taian Station from 2018 to 2021
参量 推迟日数/d 2018年 2019年 2020年 2021年 2018—2021年平均 冬前积温/(℃·d) 0 505.2 528.1 611.9 538.7 546.0 10 368.1 407.4 467.5 404.5 411.9 20 249.9 282.5 336.6 282.5 287.9 生长季积温/(℃·d) 0 2143.7 2085.1 2102 2060.9 2097.9 10 2006.6 1964.4 1979.5 1970 1980.1 20 1888.4 1839.5 1873.8 1848 1862.4 有效穗数/m-2 0 685.0 625.0 700.0 595.0 651.3 10 700.0 525.0 725.0 525.0 618.8 20 590.0 395.0 600.0 465.0 512.5 穗粒数 0 34.0 35.1 40.0 50.4 39.9 10 32.0 35.6 30.7 44.9 35.8 20 32.0 34.8 40.0 33.4 35.1 千粒重/g 0 46.0 38.5 36.9 37.2 39.7 10 42.3 38.6 40.5 36.2 39.4 20 45.5 41.8 45.0 28.1 40.1 -
[1] FAO(Food and Agricultural Organization of the United Nations).FAOSTAT, 2020. [2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2021. [3] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201 [4] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [5] 任三学, 赵花荣, 齐月, 等. 气候变化背景下麦田沟金针虫爆发性发生为害. 应用气象学报, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509 [6] 金善宝. 中国小麦学. 北京: 中国农业出版社, 1996.Jin S B. Chinese Wheat Science. Beijing: China Agriculture Press, 1996. [7] IPCC(Intergovernmental Panel on Climate Change), Climate Change. The Physical Science Basis. 2021. [8] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101 [9] WMO. WMO Statement on the State of the Global Climate in 2019. WMO No. 1248, 2020: 6-34. [10] 中国气象局气候变化中心. 中国气候变化蓝皮书. 北京: 科学出版社, 2020.National Climate Change, China Meteorological Administration. Blue Book of Climate Change in China. Beijing: Science Press, 2020. [11] Abu-Asab M S, Peterson P M, Shetler S G, et al. Earlier Plant Flowering in Spring as a Response to Global Warming in the Washington, DC, Area. Biodiversity and Conservation 10, 2021: 597-612. [12] Scheifinger H, Menzel A, Koch E, et al. Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol, 2003, 74: 41-51. doi: 10.1007/s00704-002-0704-6 [13] Song Y L, Linderholm H, Chen D L, et al. Trends of the thermal growing season in China during 1951-2007. Int J Climatol, 2010, 30: 33-43. [14] Menzel A, Jakobi G, Ahas R, et al. Variations of the climatological growing season (1951-2000) in Germany compared with other countries. Int J Climatol, 2003, 23: 793-812. doi: 10.1002/joc.915 [15] Linderholm H W, Walther A, Chen D. Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climatic Change, 2008, 87: 405-419. doi: 10.1007/s10584-007-9327-3 [16] 杨霏云, 郑秋红, 罗蒋梅, 等. 实用农业气象指标. 北京: 气象出版社, 2015: 13-14.Yang F Y, Zheng Q H, Luo J M, et al. Practical Agrometeorological Indicators. Beijing: China Meteorological Press, 2015: 13-14. [17] 宋艳玲, 王建林. 气候变化背景下农业气象灾害对我国农业生产影响评估技术. 北京: 气象出版社, 2017.Song Y L, Wang J L. The Assessment of Influence of Agro-Meteorological Disasters on Agriculture under Climate Change in China. Beijing: China Meteorological Press, 2017. [18] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101Guo J P. Advances in impacts of climate change on agriculture production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101 [19] 赵艳霞, 王馥棠, 裘国旺. 冬小麦干旱识别和预测模型研究. 应用气象学报, 2001, 12(2): 235-241. http://qikan.camscma.cn/article/id/20010231Zhao Y X, Wang F T, Qiu G W. Study of winter wheat drought and prediction model. J Appl Meteor Sci, 2001, 12(2): 235-241. http://qikan.camscma.cn/article/id/20010231 [20] 赵辉, 戴延波, 姜东, 等. 高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响. 应用生态学报, 2007, 18(2): 333-338. doi: 10.3321/j.issn:1001-9332.2007.02.017Zhao H, Dai Y B, Jiang D, et al. Effect of drought and waterlogging on flag leaf post-anthesis photosynthetic characteristics and assimilates translocation in winter wheat under high temperature. Chinese J Appl Ecology, 2007, 18(2): 333-338. doi: 10.3321/j.issn:1001-9332.2007.02.017 [21] 范雪梅, 姜东, 戴延波, 等. 花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响. 应用生态学报, 2005, 16(10): 1883-1888. doi: 10.3321/j.issn:1001-9332.2005.10.017Fan X M, Jiang D, Dai Y B, et al. Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging. Chinese J Appl Ecology, 2005, 16(10): 1883-1888. doi: 10.3321/j.issn:1001-9332.2005.10.017 [22] 吴乃元, 梁丰香, 张衍华, 等. 有限水分胁迫对小麦生长状况的影响及合理灌溉的土壤相对湿度指标. 应用气象学报, 2000, 11(增刊Ⅰ): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1023.htmWu N Y, Liang F X, Zhang Y H, et al. Effects of limited water stress on wheat growth and the relative soil moisture index of rational irrigation. J Appl Meteor Sci, 2000, 11(Suppl Ⅰ): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1023.htm [23] 尚莹, 霍治国, 张蕾, 等. 土壤相对湿度对冬小麦干热风灾害发生的影响. 应用气象学报, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508Shang Y, Huo Z G, Zhang L, et al. Effects of soil relative humidity on the occurrence of dry hot wind disaster in winter wheat. J Appl Meteor Sci, 2019, 30(5): 598-607. doi: 10.11898/1001-7313.20190508 [24] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201Huo Z G, Shang Y, Wu D R, et al. Advance on dry hot wind disaster of wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201 [25] 孟繁圆, 冯利平, 张丰瑶, 等. 北部冬麦区冬小麦越冬冻害时空变化特征. 作物学报, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htmMeng F Y, Feng L P, Zhang F Y, et al. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htm [26] 王春艳, 李茂松, 胡新, 等. 黄淮地区冬小麦的抗晚霜冻害能力. 自然灾害学报, 2006, 15(6): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH2006S1002.htmWang C Y, Li M S, Hu X, et al. Spring frost resistance of winter wheat in Huang-huai area. J Nat Disaster, 2006, 15(6): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH2006S1002.htm [27] 郑冬晓, 杨晓光, 赵锦, 等. 气候变化背景下黄淮冬麦区冬季长寒型冻害时空变化特征. 生态学报, 2015, 35(13): 4338-4346. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201513010.htmZheng X D, Yang X G, Zhao J, et al. Spatial and temporal patterns of freezing injury during winter in Huang-Huai winter wheat area under climate change. Acta Ecological Sinica, 2015, 35(13): 4338-4346. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201513010.htm [28] 莫志鸿, 霍治国, 叶彩华, 等. 北京地区冬小麦越冬冻害的时空分布与气候风险区划. 生态学杂志, 2013, 32(12): 3197-3206. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201312012.htmMo Z H, Huo Z G, Ye C H, et al. Spatial temporal distribution and climatic risk zonation of freeze injury of winter wheat during overwintering stage in Beijing region. Chinese Journal of Ecology, 2013, 32(12): 3197-3206. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201312012.htm [29] 李茂松, 王道龙, 张强, 等. 2004—2005年黄淮海地区冬小麦冻害成因分析. 自然灾害学报, 2005, 14(4): 51-55. doi: 10.3969/j.issn.1004-4574.2005.04.009Li M S, Wang D L, Zhang Q, et al. Cause analysis of frost damage to winter wheat in Huang-Hai Plain during 2004-2005. J Nat Disaster, 2005, 14(4): 51-55. doi: 10.3969/j.issn.1004-4574.2005.04.009 [30] 赵花荣, 任三学, 齐月, 等. 基于分期播种试验的冬小麦越冬冻害调查分析. 干旱气象, 2019, 37(4): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904014.htmZhao H R, Ren S X, Qi Y, et al. Investigation and analysis of winter wheat frost damage based on sowing test under different sowing dates. J Arid Meteor, 2019, 37(4): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904014.htm