Comparison of Drought Recognition of Spring Maize in Northeast China Based on 3 Remote Sensing Indices
-
摘要: 以东北春玉米为研究对象,探究利用植被光合特性的日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)指数、近红外-短波红外波段构建的归一化差值水分指数(normalized difference water index,NDWI)和可见光-近红外波段构建的归一化差值植被指数(normalized difference vegetation index,NDVI)识别东北春玉米干旱的准确度和敏感度。研究发现:SIF指数、NDWI和NDVI对干旱识别准确度均超过80%,其中重度干旱准确度超过94%,且在春玉米苗期表现最佳;3种指数对比可知,SIF指数在春玉米干旱识别的准确度和敏感度方面均最佳,分别为89.27%和81.65%,NDWI敏感度次之,NDVI最差。表明基于光合特性的SIF指数在识别东北春玉米干旱方面优于基于地物光谱特性所构建的植被指数。
-
关键词:
- 日光诱导叶绿素荧光指数;
- 归一化差值水分指数;
- 归一化差值植被指数;
- 春玉米;
- 干旱敏感性
Abstract: Drought is a complex and widespread natural disaster, which has brought serious environmental and social problems and caused huge economic losses to China. For nearly half a century, the trend of aridification in Northeast China has been very significant, the area of influence has increased, and the degree of drought has also intensified significantly. Drought index is the basis of judging the occurrence of drought events, evaluating the degree of drought, clarifying the spatiotemporal characteristics of drought, and formulating measures for drought prevention and mitigation. Numerous studies indicate that solar-induced chlorophyll fluorescence(SIF), normalized difference vegetation index(NDVI), enhanced vegetation index(EVI), and normalized difference water index(NDWI) can be used to identify agricultural drought, but the research on comparing the ability of SIF index, NDWI and NDVI for identifying agricultural drought has not been reported publicly. Taking spring maize in Northeast China as the research object, NDWI and NDVI are calculated using the surface reflectance data MOD09A1. Combined with SIF index, NDWI and NDVI, the time series dataset of remote sensing drought index is constructed, respectively, and the accuracy and sensitivity of these three indices for identifying the drought is further explored. It shows that the accuracy of three indices in indentifying maize drought are all higher than 80%, and the accuracy of SIF index is the highest, reaching 89.27%. The accuracy for identifying severe drought is higher than mild and moderate drought for three indices, all reaching more than 94%, and the accuracy of SIF index exceeds 95%. From the perspective of different developmental stages of spring maize, the monitoring accuracy is the highest at seedling stage, reaching more than 90%, and is the lowest at jointing-booting stage and grain filling-maturity stage. The drought identifying accuracies of SIF index during four developmental periods of spring maize are all better than those of NDWI and NDVI. The sensitivities of SIF index, NDWI and NDVI to the identification of maize drought are different, and the SIF index has the highest sensitivity to drought identification, followed by NDWI, and NDVI is slightly lower. In terms of drought grades, the identifying sensitivities of three indices to severe drought are all higher than those of mild and moderate drought. Above all, compared with NDWI and NDVI, SIF index has better accuracy and sensitivity in identifying the drought of spring maize in Northeast China, and can make timely and accurate response to maize drought in Northeast China. The results have important practical significance for accurately identifying and predicting drought of spring maize in Northeast China, and taking effective drought-resistant measures in a timely and objective manner to minimize the damage to crops.-
Key words:
- SIF index;
- NDWI;
- NDVI;
- spring maize;
- drought sensitivity
-
图 5 SIF指数、NDWI和NDVI识别春玉米干旱敏感度对比
(a)判定干旱发生与灾害记录日数差, (b)判定干旱发生与灾害记录日数差频次和累计频次
Fig. 5 Sensitivity in identifying drought for spring maize by SIF index, NDWI and NDVI
(a)difference between drought occurrence date and determined disaster record date, (b)the difference frequency and cumulative frequency between drought occurrence date and determined disaster record date
表 1 SIF指数、NDWI和NDVI识别春玉米不同发育阶段不同等级干旱准确度
Table 1 Accuracy of SIF index, NDWI and NDVI in identifying different drought grades at different developmental stages of spring maize
遥感指数 发育阶段 准确度/% 轻度干旱 中度干旱 重度干旱 总体 SIF指数 苗期 100.00 94.44 94.45 95.77 拔节-孕穗期 78.95 81.82 100.00 81.82 抽穗-开花期 100.00 92.31 100.00 96.77 灌浆-成熟期 78.57 76.47 100.00 80.56 NDWI 苗期 88.24 88.89 100.00 91.55 拔节-孕穗期 73.68 72.73 100.00 75.76 抽穗-开花期 85.71 76.92 90.91 83.87 灌浆-成熟期 64.29 82.35 100.00 77.78 NDVI 苗期 100.00 94.44 94.45 95.77 拔节-孕穗期 73.68 45.45 100.00 66.67 抽穗-开花期 85.71 76.92 90.91 83.00 灌浆-成熟期 64.29 82.35 100.00 77.00 -
[1] 陈晓玲, 赵红梅, 田礼乔.环境遥感模型与应用.武汉:武汉大学出版社, 2008:188-189.Chen X L, Zhao H M, Tian L Q. Remote Sensing of Environment: Models and Applications. Wuhan: Wuhan University Press, 2008: 188-189. [2] 高涛涛, 殷淑燕, 王水霞. 基于SPEI指数的秦岭南北地区干旱时空变化特征. 干旱区地理, 2018, 41(4): 761-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804012.htmGao T T, Yin S Y, Wang S X. Spatial and temporal variations of drought in northern and southern regions of Qinling Mountains based on standardized precipitation evapotranspiration index. Arid Land Geography, 2018, 41(4): 761-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804012.htm [3] 宋艳玲, 王建林, 田靳峰, 等. 气象干旱指数在东北春玉米干旱监测中的改进. 应用气象学报, 2019, 30(1): 25-34. doi: 10.11898/1001-7313.20190103Song Y L, Wang J L, Tian J F, et al. The spring maize drought index in Northeast China based on mrtrorological drought index. J Appl Meteor Sci, 2019, 30(1): 25-34. doi: 10.11898/1001-7313.20190103 [4] 倪深海, 顾颖, 彭岳津, 等. 近七十年中国干旱灾害时空格局及演变. 自然灾害学报, 2019, 28(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906019.htmNi S H, Gu Y, Peng Y J, et al. Spatio-temporal pattern and evolution trend of drought disaster in China in recent seventy years. J Nat Disaster, 2019, 28(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906019.htm [5] 蔡福, 米娜, 明惠青, 等. WOFOST模型蒸散过程改进对玉米干旱模拟影响. 应用气象学报, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105 [6] 吴霞, 王培娟, 公衍铎, 等. 1961—2015年黄淮海平原夏玉米干旱识别及时空特征分析. 农业工程学报, 2019, 35(18): 189-199. doi: 10.11975/j.issn.1002-6819.2019.18.023Wu X, Wang P J, Gong Y D, et al. Analysis of drought identification and spatio-temporal characteristics for summer corn in Huang-Huai-Hai plain in year of 1961-2015. Transactions of the CSAE, 2019, 35(18): 189-199. doi: 10.11975/j.issn.1002-6819.2019.18.023 [7] 王婧瑄, 郭建平, 李蕊. 春玉米积温稳定性及在发育期预报中的应用. 应用气象学报, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506Wang J X, Guo J P, Li R. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506 [8] 赵俊芳, 杨晓光, 刘志娟. 气候变暖对东北三省春玉米严重低温冷害及种植布局的影响. 生态学报, 2009, 29(12): 6544-6551. doi: 10.3321/j.issn:1000-0933.2009.12.029Zhao J F, Yang X G, Liu Z J. Influence of climate warming on serious low temperature and cold damage and cultivation pattern of spring maize in Northeast China. Acta Ecologica Sinica, 2009, 29(12): 6544-6551. doi: 10.3321/j.issn:1000-0933.2009.12.029 [9] 葛东, 魏新光, 景竹然, 等. 基于SPEI指数的东北玉米种植区春玉米生长季干旱演变特征. 水利与建筑工程学报, 2020, 18(4): 41-47. doi: 10.3969/j.issn.1672-1144.2020.04.007Ge D, Wei X G, Jing Z R, et al. Characteristics of drought evolution in spring maize growing season in Northeast maize planting area based on SPEI. J Water Resours Archit Eng, 2020, 18(4): 41-47. doi: 10.3969/j.issn.1672-1144.2020.04.007 [10] 王培娟, 霍治国, 杨建莹, 等. 基于热量指数的东北春玉米冷害指标. 应用气象学报, 2019, 30(1): 13-24. doi: 10.11898/1001-7313.20190102Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. doi: 10.11898/1001-7313.20190102 [11] 赵锦, 杨晓光, 刘志娟, 等. 全球气候变暖对中国种植制度的可能影响X. 气候变化对东北三省春玉米气候适宜性的影响. 中国农业科学, 2014, 47(16): 3143-3158. doi: 10.3864/j.issn.0578-1752.2014.16.003Zhao J, Yang X G, Liu Z J, et al. The possible effects of global warming on cropping systems in China Ⅹ. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Scientia Agricultura Sinica, 2014, 47(16): 3143-3158. doi: 10.3864/j.issn.0578-1752.2014.16.003 [12] 刘志娟, 杨晓光, 王文峰, 等. 全球气候变暖对中国种植制度可能影响Ⅳ. 未来气候变暖对东北三省春玉米种植北界的可能影响. 中国农业科学, 2010, 43(11): 2280-2291. doi: 10.3864/j.issn.0578-1752.2010.11.011Liu Z J, Yang X G, Wang W F, et al. The possible effects of global warming on cropping systems in China Ⅳ. The possible impact of future climatic warming on the northern limits of spring maize in three provinces of Northeast China. Scientia Agricultura Sinica, 2010, 43(11): 2280-2291. doi: 10.3864/j.issn.0578-1752.2010.11.011 [13] 董秋婷, 李茂松, 刘江, 等. 近50年东北地区春玉米干旱的时空演变特征. 自然灾害学报, 2011, 20(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201104007.htmDong Q T, Li M S, Liu J, et al. Spatio-temporal evolution characteristics of drought of spring maize in Northeast China in recent 50 years. J Nat Disaster, 2011, 20(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201104007.htm [14] 殷飞, 金世佳. 遥感在农业旱情监测中的应用现状与展望. 干旱环境监测, 2015, 29(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC201502009.htmYin F, Jin S J. Application status and prospect on agricultural drought monitoring based on remote sensing. Arid Environ Monitor, 2015, 29(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC201502009.htm [15] 黄友昕, 刘修国, 沈永林, 等. 农业干旱遥感监测指标及其适应性评价方法研究进展. 农业工程学报, 2015, 31(16): 186-195. doi: 10.11975/j.issn.1002-6819.2015.16.025Huang Y X, Liu X G, Shen Y L, et al. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods. Transactions of the CSAE, 2015, 31(16): 186-195. doi: 10.11975/j.issn.1002-6819.2015.16.025 [16] 郭铌, 陈添宇, 雷建勤, 等. 用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度. 应用气象学报, 1997, 8(2): 85-91. http://qikan.camscma.cn/article/id/19970228Guo N, Chen T Y, Lei J Q, et al. Estimating farmland soil moisture in eastern Gansu Province using NOAA satellite data. J Appl Meteor Sci, 1997, 8(2): 85-91. http://qikan.camscma.cn/article/id/19970228 [17] 王圆圆, 扎西央宗. 利用条件植被指数评价西藏植被对气象干旱的响应. 应用气象学报, 2016, 27(4): 435-444. doi: 10.11898/1001-7313.20160406Wang Y Y, Zhaxi Yangzong. Assessing vegetation response to meteorological drought in Tibet autonomous region using vegetation condition index. J Appl Meteor Sci, 2016, 27(4): 435-444. doi: 10.11898/1001-7313.20160406 [18] 李文梅, 覃志豪, 李文娟, 等. MODIS NDVI与MODIS EVI的比较分析. 遥感信息, 2010(6): 73-78. doi: 10.3969/j.issn.1000-3177.2010.06.016Li W M, Qin Z H, Li W J, et al. Comparison and analysis of MODIS NDVI and MODIS EVI. Remote Sens Inf, 2010(6): 73-78. doi: 10.3969/j.issn.1000-3177.2010.06.016 [19] Fensholt R, Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near and shortwave infrared data in a semiarid environment. Remote Sens Environ, 2003(87): 111-121. [20] 刘小磊, 覃志豪. NDWI与NDVI指数在区域干旱监测中的比较分析——以2003年江西夏季干旱为例. 遥感技术与应用, 2007, 22(5): 608-612. doi: 10.3969/j.issn.1004-0323.2007.05.006Liu X L, Qin Z H. Comparative analysis between NDWI and NDVI indices in regional drought monitoring. Remote Sens Technol Appl, 2007, 22(5): 608-612. doi: 10.3969/j.issn.1004-0323.2007.05.006 [21] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10): 2186-2196. doi: 10.3321/j.issn:1000-4025.2006.10.037Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Bot Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. doi: 10.3321/j.issn:1000-4025.2006.10.037 [22] 刘雷震, 武建军, 周洪奎, 等. 叶绿素荧光及其在水分胁迫监测中的研究进展. 光谱学与光谱分析, 2017, 37(9): 2780-2787. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709025.htmLiu L Z, Wu J J, Zhou H K, et al. Chlorophyll fluorescence and its progress in detecting water stress. Spectrosc Spect Anal, 2017, 37(9): 2780-2787. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709025.htm [23] 曹银轩, 黄卓, 徐喜娟, 等. 黄土高原植被日光诱导叶绿素荧光对气象干旱的响应. 应用生态学报, 2022, 33(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202202021.htmCao Y X, Huang Z, Xu X J, et al. Responses of solar-induced chlorophyll fluorescence to meteorological drought across the Loess Plateau, China. Chinese J Appl Ecology, 2022, 33(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202202021.htm [24] Cao J J, An Q, Zhang X, et al. Is satellite Sun-induced chlorophyll fluorescence more indicative than vegetation indices under drought condition?. Sci Total Environ, 2021, 792: 148396. doi: 10.1016/j.scitotenv.2021.148396 [25] 史晓亮, 吴梦月, 丁皓. SPEI和植被遥感信息监测西南地区干旱差异分析. 农业机械学报, 2020, 51(12): 184-192. doi: 10.6041/j.issn.1000-1298.2020.12.020Shi X L, Wu M Y, Ding H. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in Southwest China. Trans Chinese Soc Agric Mach, 2020, 51(12): 184-192. doi: 10.6041/j.issn.1000-1298.2020.12.020 [26] 陈鑫, 计璐艳, 于凯, 等. 日光诱导叶绿素荧光对山东省干旱的监测. 中国科技论文, 2021, 16(5): 564-570. doi: 10.3969/j.issn.2095-2783.2021.05.017Chen X, Ji L Y, Yu K, et al. Monitoring of drought in Shandong Province by sun-induced chlorophyll fluorescence. China Sciencepaper, 2021, 16(5): 564-570. doi: 10.3969/j.issn.2095-2783.2021.05.017 [27] 王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建. 应用气象学报, 2020, 31(2): 267-279. doi: 10.11898/1001-7313.20200302Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(2): 267-279. doi: 10.11898/1001-7313.20200302 [28] 刘二华, 周广胜, 周莉, 等. 夏玉米不同生育期叶片和冠层含水量的遥感反演. 应用气象学报, 2020, 31(1): 52-62. doi: 10.11898/1001-7313.20200105Liu E H, Zhou G S, Zhou L, et al. Remote sensing inversion of leaf and canopy water content in different growth stages of summer maize. J Appl Meteor Sci, 2020, 31(1): 52-62. doi: 10.11898/1001-7313.20200105 [29] 郭建平. 农业气象灾害监测预测技术研究进展. 应用气象学报, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510 [30] 郭庆法, 王庆成, 王黎明. 中国玉米栽培学. 上海: 上海科学技术出版社, 2004: 31-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201711001.htmGuo Q F, Wang Q C, Wang L M. Maize Cultivation in China. Shanghai: Shanghai Science and Technology Press, 2004: 31-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201711001.htm [31] 张建平, 赵艳霞, 王春乙, 等. 气候变化情景下东北地区玉米产量变化模拟. 中国生态农业学报, 2008, 16(6): 1448-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806022.htmZhang J P, Zhao Y X, Wang C Y, et al. Simulation of maize production under climate change scenario in Northeast China. Chinese J Eco-Agr, 2008, 16(6): 1448-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806022.htm [32] 马建勇, 许吟隆, 潘婕. 东北地区农业气象灾害的趋势变化及其对粮食产量的影响. 中国农业气象, 2012, 33(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202022.htmMa J Y, Xu Y L, Pan J. Analysis of agro-meteorological disasters tendency variation and the impacts on grain yield over Northeast China. Chinese J Agrometeor, 2012, 33(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202022.htm [33] Ding Y, Xu J, Wang X, et al. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci Total Environ, 2020, 716(6247): 137166. [34] 谢慧君, 张廷斌, 易桂花, 等. 川西高原植被NDVI动态变化特征及对气候因子的响应. 水土保持通报, 2020, 40(4): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202004039.htmXie H J, Zhang T B, Yi G H, et al. Dynamic characteristics of NDVI values and its response to climatic factors in Western Sichuan Plateau. Bulletin Soil Water Conser, 2020, 40(4): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202004039.htm [35] 刘欢, 刘荣高, 刘世阳. 干旱遥感监测方法及其应用发展. 地球信息科学学报, 2012, 14(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201202012.htmLiu H, Liu R G, Liu S Y. Review of drought monitoring by remote sensing. Int J Geogr Inf Sci, 2012, 14(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201202012.htm [36] 周正明. 遥感光谱指数反演土壤水分及干旱时空分布研究. 北京: 中国气象科学研究院, 2013.Zhou Z M. Soil Moisture Retrieval Uaing Remote Sensing Spectral Indexes and Tempo-spatial Drought Analysis in East China Winter Sheat-planting Area. Beijing: Chinese Academy of Meteorological Sciences, 2013. [37] Kowalski K, Okujeni A, Brell M, et al. Quantifying drought effects i n central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series. Remote Sens Environ, 2022, 268: 112781. doi: 10.1016/j.rse.2021.112781 [38] Wang Y J, Fu B J, Liu Y X, et al. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agr Forest Meteorol, 2021, 306: 18468. [39] 张淑杰, 张玉书, 孙龙彧, 等. 东北地区玉米生育期干旱分布特征及其成因分析. 中国农业气象, 2013, 34(3): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201303017.htmZhang S J, Zhang Y S, Sun L Y, et al. Analysis of distributional characteristics and primary causes of maize drought in Northeast China. Chinese J Agrometeor, 2013, 34(3): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201303017.htm