The Interaction Between Intensity and Rainfall of Typhoon Rammasun(1409)
-
摘要: 利用2014年7月10日00:00—19日18:00(世界时)热带降水测量(TRMM)卫星3B42降水估测数据以及ERA5再分析数据,结合傅里叶变换以及Liang-Kleeman信息流等方法,分析台风威马逊(1409)强度与降水变化的相互作用。结果表明:台风威马逊(1409)降水具有明显的非对称性,降水主要位于台风中心偏西一侧,在该区域台风强度与降水相互影响。相较于台风强度对降水的影响,由降水到台风强度的信息流减小接近1个量级,表明在两者的相互作用中,台风强度变化的影响占主导。在水汽条件上,台风强度的增强(减弱)导致台风中心西南侧水汽通量辐合(辐散)的增强,进而与该区域的降水建立联系。此外,台风威马逊(1409)移动过程中随着强度变化,南海以及西太平洋水汽通道均存在明显响应。在动力条件上,中低层垂直螺旋度强值中心主要位于台风中心西侧,台风强度的增强(减弱),导致台风中心西侧的垂直螺旋度绝对值增大(减小),一定程度促进(抑制)了该区域上升运动的发展,造成更多(更少)的水汽凝结致雨。Abstract: Based on the methods of Fourier decomposition, correlation analysis and Liang-Kleeman information flow, the interaction between intensity and rainfall of Typhoon Rammasun (1409) is studied using the best track data of Shanghai Typhoon Institute (STI) of China Meteorological Administration (CMA), Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 rainfall estimation data of National Aeronautics and Space Administration (NASA) and ERA5 reanalysis data of European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.25°×0.25° grids. The results show that the rainfall of Typhoon Rammasun (1409) has obvious characteristics of asymmetry, and it is mainly located in the west side of the typhoon center. The rainfall of Typhoon Rammasun (1409) increases significantly twice during the whole life cycle, which corresponds to the intensification period. The information flow analysis shows that the rainfall of Typhoon Rammasun (1409) is affected by the intensity of typhoon itself, whereas the rainfall can also feedback on the latter. Compared with the influence of typhoon intensity on rainfall, the information flow from rainfall to typhoon intensity decreases by nearly an order of magnitude, indicating that the typhoon intensity plays a dominant role in the interaction relationship. The possible mechanism by which the typhoon intensity affects rainfall are analyzed by diagnosing the water vapor and dynamic conditions respectively. In terms of water vapor conditions, the convergence area of vertical integral of moisture flux corresponds well to the rainfall. The intensification (reduction) of Typhoon Rammasun (1409) partly results in the enhanced convergence (divergence) of vertical integral of moisture flux in the southwest of the typhoon center, which brings more (less) rainfall in this region. In addition, the South China Sea and the Western Pacific water vapor transport channel have obvious response to the changes of Typhoon Rammasun (1409) intensity. In terms of dynamic conditions, the strong center of vertical helicity in the middle and lower layers is mainly located in the west side of the typhoon center, indicating the rainfall area. The intensification (reduction) of Typhoon Rammasun (1409) leads to the increase (decrease) of absolute vertical helicity on the west side of the typhoon center, thus promotes (inhibits) the development of upward movement to a certain extent, resulting in more (less) water vapor condensation and rainfall.
-
Key words:
- typhoon intensity;
- rainfall;
- information flow;
- interaction;
- asymmetry
-
图 4 台风强度到降水率(a)及降水率到台风强度(b)的信息流(填色)
(打点区域表示达到0.05显著性水平;等值线为降水率过程平均值,单位:mm·h-1)
Fig. 4 Information flows (the shaded) from typhoon intensity to precipitation rate(a) and from precipitation rate to typhoon intensity(b)
(dotted areas denote passing the test of 0.05 level;the contour denotes the averaged rain rate, unit:mm·h-1)
图 5 台风中心附近平均整层水汽通量散度
(a)2014年7月14日06:00—12:00,(b)2014年7月15日06:00—12:00,(c)2014年7月18日12:00—18:00
Fig. 5 Averaged moisture flux divergence of vertical integral near the typhoon center
(a)from 0600 UTC to 1200 UTC on 14 Jul 2014,(b)from 0600 UTC to 1200 UTC on 15 Jul 2014, (c)from 1200 UTC to 1800 UTC on 18 Jul 2014
图 6 台风强度到整层水汽通量散度(a)和潜热能(b)的信息流(填色)(打点区域表示达到0.05显著性水平,图 6a中等值线为整层水汽通量散度的过程平均值,单位:g·m-2·s-1;图 6b中等值线为整层潜热能的过程平均值,单位:J·m-2)
Fig. 6 Information flows (the shaded) from typhoon intensity to moisture flux divergence of vertical integral(a) and from typhoon intensity to latent energy of vertical integral(b)(dotted areas denote passing the test of 0.05 level, the contour in Fig. 6a denotes the averaged moisture flux diveragence of vertical integral, unit:g·m-2·s-1; the contour in Fig. 6b denotes the averaged latent energy of vertical integral, unit:J·m-2)
图 7 2014年7月15日12:00(a)和7月18日12:00(b)整层水汽通量(矢量)、通量值(填色) 及台风强度到整层水汽通量值的信息流(打点区域表示达到0.05显著性水平) (c)
Fig. 7 Moisture flux of vertical integral (the arrow) and its value (the shaded) at 1200 UTC 15 Jul 2014(a) and 1200 UTC 18 Jul 2014(b) with information flow from typhoon intensity to precipitation rate (dotted areas denote passing the test of 0.05 level) (c)
-
[1] 郑艳, 蔡亲波, 程守长, 等.超强台风"威马逊"(1409)强度和降水特征及其近海急剧加强原因.暴雨灾害, 2014, 33(4):333-341. doi: 10.3969/j.issn.1004-9045.2014.04.005Zheng Y, Cai Q B, Cheng S C, et al. Characteristics on intensity and precipitation of super Typhoon Rammasun(1409) and reason why it rapidly intensified offshore. Torrential Rain Disaster, 2014, 33(4): 333-341. doi: 10.3969/j.issn.1004-9045.2014.04.005 [2] 陈见, 孙红梅, 高安宁, 等. 超强台风"威马逊"与"达维"进入北部湾强度变化对比分析. 暴雨灾害, 2014, 33(4): 392-400. doi: 10.3969/j.issn.1004-9045.2014.04.012Chen J, Sun H M, Gao A N, et al. Comparative analysis of intensity changes between super Typhoon Rammasun(1409) and Damrey(0518) during the period of entering the Beibu Gulf. Torrential Rain Disaster, 2014, 33(4): 392-400. doi: 10.3969/j.issn.1004-9045.2014.04.012 [3] 薛一迪, 崔晓鹏. "威马逊"(1409)降水水汽来源和源区定量贡献分析. 大气科学, 2020, 44(2): 341-355. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202002009.htmXue Y D, Cui X P. Moisture sources and quantitative analyses of source contributions of precipitation associated with Rammasun(1409). Chinese J Atmos Sci, 2020, 44(2): 341-355. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202002009.htm [4] 李崇银, 钮学新. 台风自身动力学过程(CISK)对其移动的影响. 气象学报, 1988, 46(4): 497-501. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198804014.htmLi C Y, Niu X X. The effect of the typhoon dynamics process (CISK) to its moving. Acta Meteor Sinica, 1988, 46(4): 497-501. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198804014.htm [5] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [6] Rodgers E B, Adler R F. Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon Wea Rev, 1981, 109(3): 506-521. doi: 10.1175/1520-0493(1981)109<0506:TCRCAD>2.0.CO;2 [7] Lonfat M, Marks F D, Chen S Y. Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission(TRMM) microwave imager: A global perspective. Mon Wea Rev, 2004, 132(7): 1645-1660. doi: 10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2 [8] 钮学新, 杜惠良, 刘建勇. 0216号台风降水及其影响降水机制的数值模拟试验. 气象学报, 2005, 63(1): 57-68. doi: 10.3321/j.issn:0577-6619.2005.01.007Niu X X, Du H L, Liu J Y. The numerical simulation of rainfall and precipitation mechanism associated with Typhoon Sinlaku(0216). Acta Meteor Sinica, 2005, 63(1): 57-68. doi: 10.3321/j.issn:0577-6619.2005.01.007 [9] 钮学新, 杜惠良, 滕代高, 等. 影响登陆台风降水量的主要因素分析. 暴雨灾害, 2010, 29(1): 76-80. doi: 10.3969/j.issn.1004-9045.2010.01.013Niu X X, Du H L, Teng D G, et al. Main factors affecting the rainfall caused by landing typhoons. Torrential Rain Disaster, 2010, 29(1): 76-80. doi: 10.3969/j.issn.1004-9045.2010.01.013 [10] Jiang H Y. The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon Wea Rev, 2012, 140(4): 1164-1176. doi: 10.1175/MWR-D-11-00134.1 [11] Alvey G R, Zawislak J, Zipser E J. Precipitation properties observed during tropical cyclone intensity change. Mon Wea Rev, 2015, 143(11): 4476-4492. doi: 10.1175/MWR-D-15-0065.1 [12] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304 [13] 郑倩, 毛程燕, 丁丽华, 等. 台风利奇马(1909)与台风摩羯(1814)云特征对比. 应用气象学报, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104 [14] Tu S F, Xu J J, Chan J C L, et al. Recent global decrease in the inner-core rain rate of tropical cyclones. Nat Commun, 2021, 12(1): 1948. doi: 10.1038/s41467-021-22304-y [15] Liang X S. Information flow within stochastic dynamical systems. Phys Rev E, 2008, 78(3): 031113. doi: 10.1103/PhysRevE.78.031113 [16] Liang X S. The Liang-Kleeman information flow: Theory and applications. Entropy, 2013, 15(1): 327-360. doi: 10.3390/e15010327 [17] Liang X S. Unraveling the cause-effect relation between time series. Phys Rev E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150 [18] Stips A, Macias D, Coughlan C, et al. On the causal structure between CO2 and global temperature. Sci Rep, 2016, 6: 21691. doi: 10.1038/srep21691 [19] Xiao H X, Zhang F, Miao L J, et al. Long-term trends in Arctic surface temperature and potential causality over the last 100years. Climate Dyn, 2020, 55(5/6): 1443-1456. [20] Liang X S, Xu F, Rong Y N, et al. El Ni o Modoki can be mostly predicted more than 10 years ahead of time. Sci Rep, 2021, 11: 17860. doi: 10.1038/s41598-021-97111-y [21] Cai Y C, Jin C J, Wang A Z, et al. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China. Plos One, 2015, 10(4): e0120026. doi: 10.1371/journal.pone.0120026 [22] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405 [23] Yu Z F, Wang Y Q, Xu H M, et al. On the Relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J Appl Meteor Climatol, 2017, 56(10): 2883-2901. doi: 10.1175/JAMC-D-16-0334.1 [24] 蒋贤玲, 任福民, 马柱国, 等. 2014年两次路径相似热带气旋降水特征及其成因的对比. 地球物理学报, 2017, 60(4): 1305-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704007.htmJiang X L, Ren F M, Ma Z G, et al. Rainfall characteristic and cause comparison of two track-similar tropical cyclones in 2014. Chinese J Geophys, 2017, 60(4): 1305-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704007.htm [25] 覃丽, 吴启树, 曾小团, 等. 对流非对称台风"天鸽"(1713)近海急剧增强成因分析. 暴雨灾害, 2019, 38(3): 212-220. doi: 10.3969/j.issn.1004-9045.2019.03.003Qin L, Wu Q S, Zeng X T, et al. Analysis on cause of rapid intensification of asymmetrical Typhoon Hato. Torrential Rain Disaster, 2019, 38(3): 212-220. doi: 10.3969/j.issn.1004-9045.2019.03.003 [26] 吴天贻, 周玉淑, 王咏青, 等. 两次不同季风强度背景下的西行台风登陆过程降水特征对比分析. 大气科学, 2021, 45(6): 1173-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106002.htmWu T Y, Zhou Y S, Wang Y Q, et al. Comparative analysis of precipitation characteristics of the westward typhoon cases "Bilis" and "Sepat" during landfall under different monsoon intensities. Chinese J Atmos Sci, 2021, 45(6): 1173-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106002.htm [27] 周芯玉, 程正泉, 涂静, 等. 台风艾云尼非对称降水及动热力结构演变特征分析. 气象学报, 2020, 78(6): 899-913. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006002.htmZhou X Y, Cheng Z Q, Tu J, et al. Analysis on the asymmetrical precipitation and evolution of dynamic and thermodynamic structure of Typhoon Ewiniar. Acta Meteor Sinica, 2020, 78(6): 899-913. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006002.htm [28] 吕心艳, 许映龙, 黄焕卿. 台风"威马逊"(1409)在南海北部急剧增强的环境因子分析. 海洋预报, 2021, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202103001.htmLü X Y, Xu Y L, Huang H Q. Analysis on environmental factors of the extremely rapid intensification of Typhoon "Rammasun"(1409) in the northern South China Sea. Marin Forec, 2021, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202103001.htm [29] Marks F D. Evolution of the structure of precipitation in Hurricane Allen(1980). Mon Wea Rev, 1985, 113(6): 909-930. doi: 10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2 [30] Marks F D, Houze Jr R A, Gamache J. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part Ⅰ: Kinematic structure. J Atmos Sci, 1992, 49(11): 919-942. doi: 10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2 [31] 李崇银. 第二类条件不稳定理论及其进一步研究. 气象科技, 1984(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198404000.htmLi C Y. The "CISK" theory and its further research. Meteor Sci Technol, 1984(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198404000.htm [32] 张建海, 张立波, 庞盛荣. 台风"卡努"(0515)加强过程对边界层参数化方案的敏感性试验. 应用海洋学学报, 2007, 26(1): 26-35. doi: 10.3969/j.issn.1000-8160.2007.01.004Zhang J H, Zhang L B, Pang S R. Sensitive experiments on the boundary layer schemes during the strengthening process of typhoon Khanun. J Appl Oceanogr, 2007, 26(1): 26-35. doi: 10.3969/j.issn.1000-8160.2007.01.004 [33] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征. 应用气象学报, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of Super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306 [34] 张建海, 庞盛荣. "莫兰蒂"台风(1010)暴雨成因分析. 暴雨灾害, 2011, 30(4): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104003.htmZhang J H, Pang S R. Analysis on the cause of rainstorm of the Typhoon Meranti(1010). Torrential Rain Disaster, 2011, 30(4): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104003.htm [35] 鲁亚斌, 张腾飞, 徐八林, 等. 麦莎台风造成冀东大暴雨的数值模拟和诊断分析. 应用气象学报, 2006, 17(2): 201-206. http://qikan.camscma.cn/article/id/20060234Lu Y B, Zhang T F, Xu B L, et al. Mesoscale analysis on a heavy rain associated with Bengal Bay storm and cold air in west Yunnan. J Appl Meteor Sci, 2006, 17(2): 201-206. http://qikan.camscma.cn/article/id/20060234 [36] 陈艳, 宿海良, 寿绍文, 等. 麦莎台风造成冀东大暴雨的数值模拟和诊断分析. 应用气象学报, 2008, 19(2): 209-218. http://qikan.camscma.cn/article/id/20080237Chen Y, Su H L, Shou S W, et al. Numerical simulation and diagnosis analysis on heavy rain in east Hebei by Typhoon Matsa. J Appl Meteor Sci, 2008, 19(2): 209-218. http://qikan.camscma.cn/article/id/20080237 [37] 覃武, 赵金彪, 黄荣成, 等. 台风"山竹"登陆结构变化及造成广西强降水异常分布的成因分析. 热带气象学报, 2019, 35(5): 587-595. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201905002.htmQin W, Zhao J B, Huang R C, et al. Cause analysis on the structural change of Typhoon Mangkhut during its landing and the abnormal distribution of heavy precipition in Guangxi. J Trop Meteor, 2019, 35(5): 587-595. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201905002.htm [38] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in the South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302 [39] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103