留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMA-GFS云预报的偏差分布特征

李喆 陈炯 马占山 陆慧娟 胡江凯 刘奇俊

李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502..
引用本文: 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502.
Li Zhe, Chen Jiong, Ma Zhanshan, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502.
Citation: Li Zhe, Chen Jiong, Ma Zhanshan, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502.

CMA-GFS云预报的偏差分布特征

DOI: 10.11898/1001-7313.20220502
资助项目: 

国家重点研发计划 2017YFA0604500

详细信息
    通信作者:

    李喆, 邮箱:liz@cma.gov.cn

Deviation Distribution Features of CMA-GFS Cloud Prediction

  • 摘要: 利用2021年3月—2022年2月ERA5再分析数据云量、云水凝物对中国气象局研发的全球数值预报系统CMA-GFS同期云量产品和由云量、云水凝物产品计算的云发生、云水凝物积分的偏差特征进行诊断评估, 初步探讨了CMA-GFS云预报偏差存在的可能原因。结果显示:CMA-GFS云量、云水凝物的分布较为合理, CMA-GFS能够描绘全球云量、云水凝物的分布特征, 并能够反映季节特征;CMA-GFS预报高云和中云的云量偏差大于低云的云量偏差, 而高云和中云的云量均方根误差较低云偏小, 说明模式高云和中云的预报稳定性优于低云;与ERA5再分析数据相比, CMA-GFS液相水凝物积分以负偏差为主, 冰相水凝物积分以正偏差为主;云量、云水凝物的偏差在不同地区成因不同, 在热带地区的偏差与对流参数化和微物理方案不协调有关, 在南北半球中高纬度地区的偏差与相对湿度偏差相关。
  • 图  1  季节平均ERA5再分析数据云量分布

    Fig. 1  Seasonal mean cloud fraction from ERA5 reanalysis data

    图  2  云发生频率偏差分布

    Fig. 2  Frequency bias of cloud occurrence

    图  3  CMA-GFS云量产品与ERA5再分析数据云量经向分布

    Fig. 3  Meridional mean cloud fraction from CMA-GFS and ERA5 reanalysis data

    图  4  CMA-GFS云发生与云量综合评估

    Fig. 4  Evaluation of CMA-GFS cloud occurrence and cloud fraction prediction skill

    图  5  季节平均液相水凝物积分偏差分布

    Fig. 5  Seasonal mean liquid water hydrometer integration

    图  6  季节平均冰相水凝物积分偏差分布

    Fig. 6  Seasonal mean solid water hydrometer integration

    图  7  季节平均CMA-GFS水凝物积分与ERA5再分析数据水凝物积分经向分布

    Fig. 7  Meridional distribution of seasonal mean cloud hydrometeor integration from CMA-GFS and ERA5 reanalysis data

    图  8  水凝物积分偏差与均方根误差评估

    Fig. 8  Evaluation of the seasonal mean cloud hydrometeors integration bias and root mean square error prediction skill

    图  9  季节平均CMA-GFS预报与ERA5再分析数据、GPM降水率经向分布

    Fig. 9  Meridional distribution of seasonal mean precipitation rate from CMA-GFS forecasting and ERA5 reanalysis data, GPM data

  • [1] Stephens G L.Cloud feedbacks in the climate system:A critical review.J Climate, 2005, 18(2):237-273. doi:  10.1175/JCLI-3243.1
    [2] Morrison H, Gettelman A, Steven J G. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3(CAM3). Part Ⅱ: Single-column and global results. J Climate, 2008, 21(15): 3660-3679. doi:  10.1175/2008JCLI2116.1
    [3] Hahn C J, Warren S G. A Gridded Climatology of Clouds over Land (1971-96) and Ocean (1954-97) from Surface Observations Worldwide. Numeric Data Package NDP-026E ORNL/CDIAC-153, CDIAC, Department of Enery, Oak Ridge, Tennessee, 2007.
    [4] Stephens G L, Vane D G, Boain R J, et al. The cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull Amer Meteor Soc, 2002, 83(12): 1771-1790. doi:  10.1175/BAMS-83-12-1771
    [5] 尹金方, 王东海, 翟国庆. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性. 地球科学进展, 2014, 29(2): 238-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402005.htm

    Yin J F, Wang D H, Zhai G Q. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China. Adv Earth Sci, 2014, 29(2): 238-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402005.htm
    [6] 邓涛, 张镭, 陈敏, 等. 高云和气溶胶辐射效应对边界层的影响. 大气科学, 2010, 34(5): 979-987. doi:  10.3878/j.issn.1006-9895.2010.05.12

    Deng T, Zhang L, Chen M, et al. The influence of high cloud and aerosol radiative effect on boudary layer. Chinese J Atmos Sci, 2010, 34(5): 979-987. doi:  10.3878/j.issn.1006-9895.2010.05.12
    [7] Wilson R J, Lewis S R, Montabone L, et al. Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys Res Lett, 2008, 35(7): L07202. doi:  10.1029/2007GL032405/pdf
    [8] Gates W L, Boyle J S, Covey C, et al. An overview of the results of the atmospheric model intercomparison project (AMIPI). Bull Amer Meteor Soc, 1999, 80(1): 29-55. doi:  10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
    [9] Jacob D, Van den Hurk B J J M, Andræ U, et al. A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteor Atmos Phys, 2001, 77: 19-43. doi:  10.1007/s007030170015
    [10] Klein S, Jakob C. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Wea Rev, 1999, 127(10): 2514-2531. doi:  10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
    [11] Solomon S, Qin D, Manninget M, et al. Climiate Change 2007: The Physical Sciences Basis. Cambridge: Cambriged University Press, 2007.
    [12] Cotton W R. Numerical simulation of precipitation development in supercooled cumuli-Part I. Mon Wea Rev, 1972, 100(11): 757-763. doi:  10.1175/1520-0493(1972)100<0757:NSOPDI>2.3.CO;2
    [13] Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34(10): 1596-1618. doi:  10.1175/1520-0469(1977)034<1596:NSOTLH>2.0.CO;2
    [14] Takahashi T. Hail in an axisymmetric cloud model. J Atmos Sci, 1976, 33(8): 1576-1601.
    [15] Paluch I R. Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J Appl Meteor, 1978, 17(6): 763-777. doi:  10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2
    [16] Raymond D J, Blyth A M. Precipitation development in a New Mexico thunderstorm. Quart J Roy Meteor Soc, 1989, 115(490): 1397-1423. doi:  10.1002/qj.49711549011
    [17] Sokol Z, Zacharov P, Skripnikova K. Simulation of the storm on 15 August, 2010, using a high resolution COSMO NWP model. Atmos Res, 2014, 137: 100-111. doi:  10.1016/j.atmosres.2013.09.015
    [18] Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 2004, 132(1): 103-120. doi:  10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    [19] Morrison H, Curry J A, Khvorostyanov V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ: Description. J Atmos Sci, 2005, 62(6): 1665-1677. doi:  10.1175/JAS3446.1
    [20] Thompson G, Field P R, Rasmussen R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ: Implementation of a new snow parameterization. Mon Wea Rev, 2008, 136(12): 5095-5115. doi:  10.1175/2008MWR2387.1
    [21] Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Wea Rev, 2010, 138(5): 1587-1612. doi:  10.1175/2009MWR2968.1
    [22] 胡志晋, 严采蘩. 层状云微物理过程的数值模拟(一)——微物理模式. 气象科学研究院院刊, 1986, 1(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601005.htm

    Hu Z J, Yan C F. Numerical simulation of microphysical processes in stratiform clouds (I)-Microphysical model. J Academy Meter Sci, 1986, 1(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601005.htm
    [23] 胡志晋, 娄小凤, 包绍武, 等. 一个简单的混合相云降水显示方案. 应用气象学报, 1998, 9(3): 257-264. http://qikan.camscma.cn/article/id/19980338

    Hu Z J, Lou X F, Bao S W, et al. A simplifed explicit scheme of phase mixed cloud and precipitation. J Appl Meteor Sci, 1998, 9(3): 257-264. http://qikan.camscma.cn/article/id/19980338
    [24] 徐焕斌, 段英. 云粒子谱演化研究中的一些问题. 气象学报, 1999, 57(4): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199904005.htm

    Xu H B, Duan Y. Some questions in studying the evolution of size distribution spectaum of hydrometeor paricels. Acta Meteor Sinica, 1999, 57(4): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199904005.htm
    [25] 孙晶, 楼小凤, 胡志晋, 等. CAMS复杂云微物理方案与GRA-PES模式耦合的数值试验. 应用气象学报, 2008, 19(3): 315-325. doi:  10.3969/j.issn.1001-7313.2008.03.007

    Sun J, Lou X F, Hu Z J, et al. Numerical experiment of the coupling of CAMS complex microphysical scheme and GRAPES model. J Appl Meteor Sci, 2008, 19(3): 315-325. doi:  10.3969/j.issn.1001-7313.2008.03.007
    [26] 胡志晋, 何观芳. 积雨云微物理过程的数值模拟(一)——微物理模式. 气象学报, 1987, 45(4): 467-484. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198704011.htm

    Hu Z J, He G F. Numerical simulation of micro processes in cumulonimbus clouds (I) microphysical model. Acta Meteor Sinica, 1987, 45(4): 467-484. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198704011.htm
    [27] 刘奇俊, 胡志晋, 周秀骥. HLAFS显式云降水方案及其对暴雨和云的模拟(I)云降水显示方案. 应用气象学报, 2003, 14(增刊Ⅰ): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1007.htm

    Liu Q J, Hu Z J, Zhou X J. Explicit cloud schemes of hlafs and simulation of heavy rainfall and clouds, Part I: Explicit cloud schemes. J Appl Meteor Sci, 2003, 14(Suppl Ⅰ): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1007.htm
    [28] 陈雪娇, 刘奇俊, 马占山. GRAPES全球模式云方案的诊断研究. 气象学报, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm

    Chen X J, Liu Q J, Ma Z S. A diagnostic study of cloud scheme for the GRAPES global forecast model. Acta Meteor Sinica, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm
    [29] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展. 地球科学进展, 2014, 29(3): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201403005.htm

    Pan L J, Zhang H F, Wang J P. Progress on verification methods of numerical weather prediction. Adv Earth Sci, 2014, 29(3): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201403005.htm
    [30] Koh T Y, Bhatt B C, Cheung K K W, et al. Using the spectral scaling exponent for validation of quantitative precipitation forecasts. Meteor Atmos Phys, 2012, 115: 35-45. doi:  10.1007/s00703-011-0166-4
    [31] Tiedtke M. Representation of clouds in large-scale models. Mon Wea Rev, 1993, 121(11): 3040-3061. doi:  10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
    [32] Li J L, Jiang J H, Waliser D E, et al. Assessing consistency between COS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys Res Lett, 2007, 34(L08): L08701. http://www.onacademic.com/detail/journal_1000035772159510_f168.html
    [33] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [34] Illingworth A J, Hogan R J, Connor E J, et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull Amer Meteor Soc, 2007, 88(6): 883-898. doi:  10.1175/BAMS-88-6-883
    [35] Tao W K, Chern J D, Atlas R, et al. A multiscale modeling system developments, applications, and critical issues. Amer Meteor Soc, 2009, 90(4): 515-534. doi:  10.1175/2008BAMS2542.1
    [36] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205

    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [37] 谭超, 刘奇俊, 马占山. GRAPES全球模式次网格对流过程对云预报的影响研究. 气象学报, 2013, 71(5): 867-878. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305006.htm

    Tan C, Liu Q J, Ma Z S. Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteor Sinica, 2013, 71(5): 867-878. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305006.htm
    [38] 马占山, 刘奇俊, 秦琰琰. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估. 高原气象, 2016, 35(4): 989-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604014.htm

    Ma Z S, Liu Q J, Qin Y Y. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRAPES_GFS Model. Plateau Meteor, 2016, 35(4): 989-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604014.htm
    [39] Arbizu-Barrena C, Pozo-Vazquez D, Ruiz-Arias J A, et al. Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data. J Geophys Res Atmos, 2015, 120(19): 10297-10312. http://smartsearch.nstl.gov.cn/paper_detail.html?id=521dd00a8a280f9f1da41f1387a0c215
    [40] World Meteorological Organization/World Weather Research Programme (WMO/WWRP). Recommended Methods for Evaluating Cloud and Related Parameters World Weather Research Programme (WWRP)/Working Group on Numerical Experimentation (WGNE) Joint Working Group on Forecast Verification Research (JWGFVR), Document WWRP 2012-1, 2012.
    [41] Yuter S E, Houze J R R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123(7): 1941-1963. doi:  10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
    [42] Morcrette J J. Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon Wea Rev, 1991, 119(5): 1205-1224. doi:  10.1175/1520-0493(1991)119<1205:EOMGCS>2.0.CO;2
    [43] Atger F. Verification of intense precipitation forecasts from single models and ensemble prediction systems. Nonlin Processes Geophys, 2001, 8(6): 401-417. doi:  10.5194/npg-8-401-2001
    [44] Casati B, Ross G, Stephenson D B. A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor Appl, 2004, 11(2): 141-154. doi:  10.1017/S1350482704001239
    [45] Keil C, Craig G C. A displacement-based error measure applied in a regional ensemble forecasting system. Mon Wea Rev, 2007, 135(9): 3248-3259. doi:  10.1175/MWR3457.1
    [46] Keil C, Craig G C. A displacement and amplitude score employing an optical flow technique. Wea Forecasting, 2009, 24(5): 1297-1308. doi:  10.1175/2009WAF2222247.1
    [47] Ferro C A T, Richardson D S, Weigel A P. On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor Appl, 2008, 15(1): 19-24. doi:  10.1002/met.45
    [48] 何光碧, 张利红, 屠妮妮. 区域中尺度模式对西南地区一次强降水过程的预报分析. 高原山地气象研究, 2014, 34(2): 1-7. doi:  10.3969/j.issn.1674-2184.2014.02.001

    He G B, Zhang L B, Tu N N. Analyses on a heavy rainfall process prediction of regional numerical models. Plateau Mountain Meteor Res, 2014, 34(2): 1-7. doi:  10.3969/j.issn.1674-2184.2014.02.001
    [49] 许建伟, 高艳红. WRF模式对夏季黑河流域气温和降水的模拟及检验. 高原气象, 2014, 33(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404007.htm

    Xu J W, Gao Y H. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin. Plateau Meteor, 2014, 33(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404007.htm
    [50] 彭新东, 常燕, 王式功. GRAPES模式对2008年两次强降水过程的数值预报检验. 高原气象, 2010, 29(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002008.htm

    Peng X D, Chang Y, Wang S G. Numerical validation of GRAPES model with two severe precipitation processes in 2008. Plateau Meteor, 2010, 29(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002008.htm
    [51] 张小雯, 唐文苑, 郑永光, 等. GRAPES_3 km数值模式对流风暴预报能力的多方法综合评估. 气象, 2020, 46(3): 367-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003008.htm

    Zhang X W, Tang W Y, Zheng Y G, et al. Comprehensive evaluations of GRAPES_3 km numerical model in forecasting convective storms using various verification methods. Meteor Mon, 2020, 46(3): 367-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003008.htm
    [52] 徐双柱, 张兵, 谌伟. GRAPES模式对长江流域天气预报的检验分析. 气象, 2007, 33(11): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200711011.htm

    Xu S Z, Zhang B, Shen W. Forecasting verification of GRAPES model in the reaches of Changjiang River. Meteor Mon, 2007, 33(11): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200711011.htm
    [53] 叶成志, 欧阳里程, 李象玉. GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析. 热带气象学报, 2006, 22(4): 393-399. doi:  10.3969/j.issn.1004-4965.2006.04.012

    Ye C Z, Ouyang L C, Li X Y. Validation of 2005 heavy rain events over the Yangtze River Basin forecast by GRAPES. J Trop Meteor, 2006, 22(4): 393-399. doi:  10.3969/j.issn.1004-4965.2006.04.012
    [54] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405

    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [55] 周祖刚, 谈哲敏, 张熠, 等. 模式湿物理过程的组合对一次南京大暴雨降水模拟的影响分析. 南京大学学报(自然科学版), 2011, 47(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201104019.htm

    Zhou Z G, Tan Z M, Zhang Y, et al. The impact of combination of model moist physics process on numerical simulation of a Nanjing heavy rainfall event. J Nanjing Univ(Nat Sci Ed), 2011, 47(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201104019.htm
    [56] 胡鹏, 赵震, 雷恒池, 等. 河南省春季一次层状云降水云系结构和降水机制的数值模拟. 高原气象, 2009, 28(2): 374-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200902015.htm

    Hu P, Zhao Z, Lei H C, et al. Numerical simulation of cloud system structure and precipitation mechanism of stratiform precipitation in spring of Henan Province. Plateau Meteor, 2009, 28(2): 374-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200902015.htm
    [57] 马占山, 刘奇俊, 秦琰琰, 等. 利用TRMM卫星资料对人工增雨云系模式云微观场预报能力的检验. 气象学报, 2009, 67(2): 260-271. doi:  10.3321/j.issn:0577-6619.2009.02.009

    Ma Z S, Liu Q J, Qin Y Y, et al. Verification of forecasting efficiency to cloud microphysical characters of mesoscale numerical model for artificial rainfall enhancement by using TRMM satellite data. Acta Meteor Sinica, 2009, 67(2): 260-271. doi:  10.3321/j.issn:0577-6619.2009.02.009
    [58] 孙晶, 楼小凤, 史月琴. 不同微物理方案对一次梅雨锋暴雨过程模拟的影响. 气象学报, 2011, 69(5): 799-809. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105005.htm

    Sun J, Lou X F, Shi Y Q. The effects of different microphysical schemes on the simulation of a Meiyu front heavy rainfall. Acta Meteor Sinica, 2011, 69(5): 799-809. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105005.htm
    [59] Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi:  10.1007/s13351-015-5043-5
    [60] 陈炯, 马占山, 苏勇. 适用于GRAPES模式C-P边界层方案的设计和实现. 应用气象学报, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105

    Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in GRAPES Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105
    [61] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101

    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [62] Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi:  10.1002/qj.3787
    [63] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307

    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [64] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 145(722): 1882-1896. http://www.researchgate.net/publication/341448930_The_ERA5_global_reanalysis
    [65] Ma Z, Liu Q, Zhao C, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Mod Earth Sys, 2018, 10(3): 652-667. doi:  10.1002/2017MS001234
    [66] Ma Z S, Zhao C, Gong C, et al. Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system. Geosci Model Dev, 2020, 14(1): 205-221. http://www.xueshufan.com/publication/3048719362
    [67] 刘帅, 王建捷, 陈起英, 等. GRAPES_GFS模式全球降水预报的主要偏差特征. 气象学报, 2021, 79(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102007.htm

    Liu S, Wang J J, Chen Q Y, et al. The main characteristics of forecast deviation in global precipitation by GRAPES_GFS. Acta Meteor Sinica, 2021, 79(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102007.htm
  • 加载中
图(9)
计量
  • 摘要浏览量:  1327
  • HTML全文浏览量:  272
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-06-30
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回