Weather Conditions and Cloud Microphysical Characteristics of an Aircraft Severe Icing Process
-
摘要: 利用2021年2月28日机载探测资料, 结合欧洲中期天气预报中心ERA5再分析资料、陕西省延安站探空资料, 分析飞机发生严重积冰的天气背景和云的宏微观结构特征。此次严重积冰天气是受高空槽、低空切变线、低空急流和地面冷锋共同影响的结果。ERA5再分析资料表明:过冷水大值区主要分布于锋区前部暖侧的700 hPa至600 hPa高度。探空资料表明:飞机探测区环境温度为-9~-3℃, 温度露点差为0℃, 具有发生严重积冰的温度和湿度条件。飞机遭遇严重积冰期间环境温度为-8~-5℃, 云粒子探头观测的液态水含量平均为0.35 g·m-3, 最大为0.7 g·m-3;总水含量仪观测的液态水含量平均为0.5 g·m-3, 最大为0.85 g·m-3, 有11 min大于0.45 g·m-3;云粒子中值体积直径平均为20.3 μm, 云粒子数浓度平均为149.3 cm-3;云粒子数浓度由低层到高层呈增大趋势, 而云粒子中值体积直径变化趋势与之相反。计算表明:国王350飞机在穿云作业时, 云中过冷水含量分别高于0.04 g·m-3, 0.15 g·m-3和0.45 g·m-3时可能遭遇轻度积冰、中度积冰和严重积冰。Abstract: Based on the aircraft measurements on 28 February 2021, combined with ERA5 reanalysis data and sounding data, the weather background and the characteristics of cloud structure of a severe icing case on the aircraft are analyzed. The severe icing process is induced by the joint influence of high-level trough, low-level shear line, low-level jet and cold front. The ERA5 reanalysis data show that the maximum value area of supercooled water is mainly distributed at the height of 700 hPa to 600 hPa on the warm side of the front area and the ambient temperature is -4 to -12℃, accompanied by an upward movement of -0.2 to -0.8 Pa·s-1. The sounding data show that the cloud system is distributed in multiple layers. There is a deep dry layer between the upper ice crystal cloud and the lower supercooled water cloud. The temperature in the aircraft detection area is -9 to -3℃ and the dew-point spread is 0℃, which are favorable for icing. During the icing process, the air temperature is -8 to -5℃. Aircraft measurements show that there is abundant supercooled water in clouds. The average liquid water content by cloud particles probe is 0.35 g·m-3, and the maximum value is 0.7 g·m-3. The average liquid water content by total water content measurement probes is 0.5 g·m-3, the maximum value is 0.85 g·m-3, and for 11 minutes the liquid water content is larger than 0.45 g·m-3. The average median volume diameter of cloud particles is 20.3 μm, and the number concentration of cloud particles is 149.3 cm-3 on average. The number concentration of cloud particles tends to increase from low level to high level and vice versa for the median volume diameter of cloud particles. Finally, the conditions with different icing intensity that the King-air 350 aircraft may encounte during weather modification work in the cloud are discussed. The calculation shows that the King-air 350 aircraft carries out observation research or weather modification tasks when the liquid water content in the cloud is higher than 0.04 g·m-3, 0.15 g·m-3 and 0.45 g·m-3, it may encounter light, moderate, and severe icing, under certain conditions.
-
图 4 2021年2月28日09:00液态水含量垂直分布
(黑色阴影为地形;紫色矩形框表示飞机观测到严重积冰区域;填色表示液态水含量;红色虚线表示等温线,单位:℃;黑色虚线表示垂直速度,单位:Pa·s-1)
(a)沿36.25°N纬向剖面,(b)沿111.25°E经向剖面Fig. 4 Distribution of liquid water content at 0900 BT 28 Feb 2021
(the black denotes terrain;the purple box denotes the area of severe icing;the colour shaded denotes the liquid water content;the red dashed line denotes the isotherm, unit:℃;the black dashed line denotes vertical velocity, unit:Pa·s-1)
(a)the zonal section along 36.25°N, (b)the meridional section along 111.25°E表 1 机载测量设备功能及参数
Table 1 Airborne instrumentations and main parameters
仪器名称 设备功能 测量范围 精度 云粒子探头 测量云滴粒子 2~50 μm 1~12通道:1 μm;13~30通道:2 μm 综合气象要素测量系统 测量温度,风速,风向,经纬度,海拔 海拔:0~15 km温度:-20~+40℃ 测温:0.05℃;风速:0.5 m·s-1 总水含量仪 测量液态水含量,总水含量 0~10 g·m-3 0.001 g·m-3 -
[1] Gultepe I, Sharman R, Williams P D, et al. A review of high impact weather for aviation meteorology. Pure Appl Geophys, 2019, 176(5): 1869-1921. doi: 10.1007/s00024-019-02168-6 [2] Federal Aviation Administration, Federal Aviation Regulations(FAR). Part 25: Airworthiness Standards: Transport Category Airplanes. FAA, 2017. [3] 中国民用航空局. CCAR 25-R4: 中国民用航空规章第25部: 运输类飞机适航标准. 北京: 中国民用航空总局, 2011.Civil Aviation Administration of China. CCAR 25-R4: Chinese Civil Aviation Regulation No. 25: Airworthiness Standards for Transport Aircraft Beijing: Civil Aviation Administration of China, 2011. [4] Marwitz J. Comments on "characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification". J Appl Meteor Climatol, 2013, 52(7): 1670-1672. doi: 10.1175/JAMC-D-12-096.1 [5] Schack C J, Christe K O. Forecasters' Guide on Aircraft Icing. Air Weather Service Rep, AWS/TR-80/001, 1980: 1-58. [6] 李子良. 飞机积冰的气象条件分析. 四川气象, 1999, 9(3): 56-57. doi: 10.3969/j.issn.1674-2184.1999.03.015Li Z L. Analysis of meteorological conditions for aircraft icing. J Sichuan Meteor, 1999, 9(3): 56-57. doi: 10.3969/j.issn.1674-2184.1999.03.015 [7] 庞朝云, 张逸轩. 甘肃中部地区飞机积冰的气象条件分析. 干旱气象, 2008, 26(3): 53-56. doi: 10.3969/j.issn.1006-7639.2008.03.010Pang Z Y, Zhang Y X. Weather conditions of aircraft icing in the middle part of Gansu Province. Arid Meteor, 2008, 26(3): 53-56. doi: 10.3969/j.issn.1006-7639.2008.03.010 [8] 刘开宇, 申红喜, 李秀连, 等. "04.12.21"飞机积冰天气过程数值特征分析. 气象, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htmLiu K Y, Shen H X, Li X L, et al. Analysis of an aircraft icing event in Taiyuan airport. Meteor Mon, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htm [9] 迟竹萍. 飞机空中积冰的气象条件分析及数值预报试验. 气象科技, 2007, 35(5): 714-718. doi: 10.3969/j.issn.1671-6345.2007.05.021Chi Z P. Statistical analysis and numerical prediction experiment of weather conditions for aircraft icing. Meteor Sci Technol, 2007, 35(5): 714-718. doi: 10.3969/j.issn.1671-6345.2007.05.021 [10] Rasmussen R, Politovich M, Marwitz J, et al. Winter Icing and Storms Project(WISP). Bull Amer Meteor Soc, 1992, 73(7): 951-976. doi: 10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2 [11] Cober S G, Isaac G A, Strapp J W. Aircraft icing measurements in east coast winter storms. J Appl Meteor Climatol, 1995, 34(1): 88-100. doi: 10.1175/1520-0450-34.1.88 [12] Miller D, Bernstein B, McDonough B, et al. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research-Summary of Winter 96-97 Flight Operations//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. DOI: 10.2514/6.1998-577. [13] Isaac G A, Cober S G, Strapp J W, et al. Recent Canadian research on aircraft in-flight icing. Can Aeronaut Space J, 2001, 47(3): 213-221. [14] Isaac G, Cober S, Strapp J, et al. Preliminary Results from the Alliance Icing Research Study(Airs)//39th Aerospace Sciences Meeting and Exhibit, 2001. DOI: 10.2514/6.2001-393. [15] Isaac G, Ayers J, Bailey M, et al. First Results from the Alliance Icing Research Study Ⅱ//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. DOI: 10.2514/6.2005-252. [16] Bernstein B C, Wolff C A, McDonough F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅰ: Canada and the continental United States. J Appl Meteor Climatol, 2007, 46(11): 1857-1878. doi: 10.1175/2007JAMC1607.1 [17] Bernstein B C, Le Bot C. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅱ: Europe, Asia, and the globe. J Appl Meteor Climatol, 2009, 48(8): 1503-1526. doi: 10.1175/2009JAMC2073.1 [18] Bernstein B, Campo W, Algodal L, et al. The Embraer-170 and -190 Natural Icing Flight Campaigns: Keys to Success//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. DOI: 10.2514/6.2006-264. [19] DiVito S, Bernstein B C, Sims D L, et al. In-cloud Icing and Large-drop Experiment(ICICLE). Part Ⅰ: Overview//100th American Meteorological Society Annual Meeting. AMS, 2020. DOI: 10.21949/1524472. [20] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601 [21] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601 [22] 刘晓璐, 张元, 刘东升. 机载热线含水量仪探测数据校验方法. 应用气象学报, 2021, 32(6): 748-758. doi: 10.11898/1001-7313.20210609Liu X L, Zhang Y, Liu D S. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. doi: 10.11898/1001-7313.20210609 [23] 李宏宇, 周旭, 张荣, 等. 不同机载设备观测的气象要素与飞行参数对比分析. 气象, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htmLi H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm [24] 张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608 [25] Zhang R, Zhou X, Li H Y, et al. Revisiting the size of nonspherical particles recorded by optical array probes with a new method based on the convex hull. Atmos Ocean Sci Lett, 2022, 15(3): 100136. doi: 10.1016/j.aosl.2021.100136 [26] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202 [27] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604 [28] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605 [29] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607 [30] 李军霞, 李培仁, 陶玥, 等. 山西春季层状云系数值模拟及与飞机探测对比. 应用气象学报, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103 [31] 朱士超, 郭学良. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究. 气象学报, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htmZhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements. Acta Meteor Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm [32] 杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层状云微物理特征的飞机观测研究. 大气科学, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htmYang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm [33] 陈跃, 马培民, 游来光. 飞机积冰环境下的液态水含量及滴谱个例分析. 气象, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htmChen Y, Ma P M, You L G. A case study of droplet spectra and liquid water content measurements in aircraft icing environments. Meteor Mon, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htm [34] 李勤红, 乔建军, 陈增江. Y7-200a飞机自然结冰飞行试验. 飞行力学, 1999, 17(2): 64-69. doi: 10.3969/j.issn.1002-0853.1999.02.012Li Q H, Qiao J J, Chen Z J. Natural icing flight test for Y7-200a aircraft. Fligh Dynam, 1999, 17(2): 64-69. doi: 10.3969/j.issn.1002-0853.1999.02.012 [35] 王泽林, 倪洪波, 裴昌春. 我国干旱地区一次直升机自然结冰试飞天气个例分析. 沙漠与绿洲气象, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htmWang Z L, Ni H B, Pei C C. A case study of helicopter natural icing flight test in arid areas of China. Desert Oasis Meteor, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htm [36] 孙晶, 蔡淼, 王飞, 等. 安庆地区一次飞机积冰的气象条件分析. 气象, 2019, 45(10): 1341-1351. doi: 10.7519/j.issn.1000-0526.2019.10.001Sun J, Cai M, Wang F, et al. A case study of aircraft icing conditions in Anqing area. Meteor Mon, 2019, 45(10): 1341-1351. doi: 10.7519/j.issn.1000-0526.2019.10.001 [37] Che Y, Zhang J, Fang C, et al. Aerosol and cloud properties over a coastal area from aircraft observations in Zhejiang, China. Atmos Environ, 2021, 267: 118771. doi: 10.1016/j.atmosenv.2021.118771 [38] 蔡兆鑫, 蔡淼, 李培仁, 等. 华北地区一次气溶胶与浅积云微物理特性的飞机观测研究. 大气科学, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htmCai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm [39] Poore K D, Wang J, Rossow W B. Cloud layer thicknesses from a combination of surface and upper-air observations. J Climate, 1995, 8(3): 550-568. doi: 10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2 [40] Bernstein B C, Rasmussen R M, McDonough F, et al. Keys to differentiating between small- and large-drop icing conditions in continental clouds. J Appl Meteor Climatol, 2019, 58(9): 1931-1953. doi: 10.1175/JAMC-D-18-0038.1 [41] Wolff C, Mcdonough F, Bernstein B. An Examination of Aircraft Icing Conditions Associated with Cold Fronts. SAE Technical Paper, 2011-38-0020, 2011. [42] 王黎俊, 银燕, 李仑格, 等. 三江源地区秋季典型多层层状云系的飞机观测分析. 大气科学, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htmWang L J, Yin Y, Li L G, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm [43] Jeck R K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions. Flight Control Systems, 2001. [44] Jeck R. A Workable, Aircraft-specific Icing Severity Scheme//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-94.