Construction of Air-sounding-profile System Based on Foundation-remote-sensing Equipment
-
摘要: 利用天津地基遥感(风廓线雷达和微波辐射计)数据及地面自动气象站数据构建地基遥感探空廓线系统(简称遥感探空廓线), 旨在弥补常规探空层结信息时空密度不足, 对2020—2021年5—9月遥感探空廓线反演结果进行模式检验, 并从中选取10次强对流过程进行个例效果评估。结果表明:反演数据与欧洲中期天气预报中心再分析数据(ERA5)比湿的平均绝对偏差为1.06 g·kg-1, 对流有效位能相关系数为0.84(达到0.01显著性水平)。10次强对流过程中强对流发生前临近时次常规探空对流有效位能平均值为322 J·kg-1, 遥感探空廓线具有分钟级时间分辨率, 能高时效性地跟踪大气状态的演变趋势, 对流发生前8 h内对流有效位能平均峰值为1451.88 J·kg-1, 与常规探空相比具备明显对流指征。研究表明:遥感探空廓线能动态描述热动力参数的配置及对流潜势的发展与释放过程, 有利于提高短时临近预报的精细化水平。Abstract: Radiosonde data are indispensable for severe convective weather forecast because they can not only reflect the temperature and humidity structure and dynamic characteristics of local atmosphere, but also indicate the favorable conditions of convection initiation and development. However, the conventional radiosonde cannot capture local environmental parameters instantly due to insufficient space layout and low detection frequency, and the drift of sounding balloon worsens the representativeness of data. Acquiring accurate high-resolution data of temperature, humidity and horizontal wind is in great need. Combining ground-based remote sensing data and automatic weather station (AWS) data, including data of wind profile radar and AWS at Xiqing Station and radiometer at Tieta Station, a Foundation-remote-sensing Air-sounding-profile System (FAS) is constructed based on the strength of specific humidity profile inversion method and WPR-HW method. The inversion results of FAS is verified using European Centre for Mudium-Range Weather Forecasts reanalysis (ERA5) through 10 severe convective weather cases.The comparison shows that the inversion data of specific humidity and convective available potential energy (CAPE) from FAS has good consistency with ERA5 data. The correlation coefficient is 0.93, the root mean square error is 1.4 g·kg-1, the mean absolute deviation is 1.06 g·kg-1, and the mean relative deviation is 11.22% for 130 groups of specific humidity between FAS and ERA5 data. The correlation coefficient is 0.84, and the mean relative deviation is 35% for CAPE in 65 groups. The comparison test verifies the credibility of FAS data (correlation coefficients of specific humidity and CAPE both passing the test of 0.01 level). The time resolution of FAS is much higher. The mean interval time between Beijing radiosonde's occurrence time and severe convection's occurrence time is 7 h 18 min, while FAS's time resolution is just a few minutes. As a result, the mean value of CAPE detected by Beijing radiosonde is 322 J·kg-1, which is too low to indicate local convective potential in the afternoon or evening, while the mean value by FAS is 1451.88 J·kg-1, which can describe the change of atmospheric state during severe convection. FAS has high practical value in short-term forecast, as it can be used to determine the presence of convective potential and distinguish severe convective weather types timely through the configuration of convective parameters. The FAS can also capture elaborate thermodynamic structure of meso-scale and micro-scale weather system before the occurrence of severe convection. The FAS can significantly improve the lead time and accuracy of forecast.
-
图 1 遥感探空廓线与ERA5比湿对比
(a)比湿散点图,(b)比湿平均值随高度变化,(c)比湿均方根误差随高度变化,(d)比湿平均相对偏差随高度变化
Fig. 1 Comparison of specific humidity processed from Foundation-remote-sensing Air-sounding-profile System and ERA5 data
(a)the scatter diagram of humidity, (b)the mean of humidity varing with height, (c)the root mean square error of humidity varing with height, (d)the mean relative deviation of humidity varing with height
图 4 2020年8月1日天津西青站地基遥感反演产品及区域自动气象站降水量
(a)14:30—20:30天津西青站遥感探空廓线对流有效位能及自动气象站降水量,(b)16:30—20:30风廓线雷达水平风场时间-高度图(填色为风速)
Fig. 4 Retrieved products of ground-based remote sensing data at Xiqing Station of Tianjin and precipitation observed by automatic weather station on 1 Aug 2020
(a)convective available potential energy and precipitation from 1430 BT to 2030 BT, (b)time-altitude section of horizontal wind field from 1630 BT to 2030 BT (the shaded denotes velocity)
图 6 2021年5月26日天津西青站地基遥感反演产品及地面极大风风速实况
(a)10:00—16:00遥感探空廓线对流有效位能及自动气象站观测的极大风风速时序图,(b)12:00—16:00风廓线雷达水平风场时间-高度图(填色为风速)
Fig. 6 Retrieved products of ground-based remote sensing data and observed maximum wind speed at Xiqing Station of Tianjin on 26 May 2021
(a)convective available potential energy and maximum wind speed from 1000 BT to 1600 BT, (b)time-altitude section of horizontal wind field from 1200 BT to 1600 BT (the shaded denotes velocity)
表 1 北京探空与天津遥感探空在10次强对流过程的对比
Table 1 Comparison of 10 convective cases from Beijing radiosonde and Tianjin Foundation-remote-sensing Air-sounding-profile System
强对流实况 北京探空 天津遥感探空 日期 时间 间隔 对流有效位能/(J·kg-1) 整层比湿积分/(g·hPa·kg-1) 间隔 对流有效位能/(J·kg-1) 整层比湿积分/(g·hPa·kg-1) 2020-05-25 17:26 9 h 26 min 0.0 1910.0 小于15 min 3007.0 2318.8 2020-06-01 16:00 8 h 2.7 1197.1 2268.5 1054.6 2020-06-25 16:15 8 h 15 min 271.2 3230.7 1118.3 3267.3 2020-07-05 16:29 15 min 216.9 3631.1 1345.8 5185.6 2020-07-13 18:30 10 h 30 min 304.2 4369.9 856.4 4008.9 2020-08-01 19:25 11 h 25 min 451.7 4293.7 1464.4 5728.8 2020-08-12 13:25 5 h 25 min 561.7 4727.1 1501.9 6147.3 2020-09-23 06:01 8 h 1 min 515.6 2533.6 842.2 3645.5 2021-05-26 15:20 7 h 20 min 0.0 1511.3 1341.7 1248.3 2021-07-19 12:25 4 h 25 min 446.4 4705.2 772.6 6098.4 表 2 2020年8月1日08:00北京探空和14:00天津遥感探空廓线对流参数对比
Table 2 Comparison of convective parameters processed from Beijing radiosonde at 0800 BT and Tianjin Remote-Atmospheric Profile System at 1400 BT on 1 Aug 2020
对流参数 08:00北京探空 14:00天津遥感探空廓线 对流有效位能/(J·kg-1) 451.7 1455.4 对流抑制能量/(J·kg-1) 297.0 5.1 K指数 37 39 抬升指数/℃ -1.73 -4.37 自由对流高度/hPa 554.9 943.2 整层比湿积分/(g·hPa·kg-1) 4293.7 5618.5 -
[1] 魏东, 孙继松, 雷蕾, 等.三种探空资料在各类强对流天气中的应用对比分析.气象, 2011, 37(4):412-422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201104006.htmWei D, Sun J S, Lei L, et al. Comparative analysis of three kinds of sounding data in the application of the severe convective weather. Meteor Mon, 2011, 37(4): 412-422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201104006.htm [2] 叶笃正. 探空资料的应用(一). 气象, 1977, 3(11): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197711003.htmYe D Z. Application of radiosonde data. Meteor Mon, 1977, 3(11): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197711003.htm [3] 雷蕾, 孙继松, 魏东. 利用探空资料判别北京地区夏季强对流的天气类别. 气象, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htmLei L, Sun J S, Wei D, et al. Distinguishing the category of the summer convective weather by sounding data in Beijing. Meteor Mon, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htm [4] 王笑芳, 丁一汇. 北京地区强对流天气短时预报的预报方法的研究. 大气科学, 1994, 18(2): 173-183. doi: 10.3878/j.issn.1006-9895.1994.02.05Wang X F, Ding Y H. Study on method of short-range forecast of severe convective weather in Beijing Area. Chinese J Atmos Sci, 1994, 18(2): 173-183. doi: 10.3878/j.issn.1006-9895.1994.02.05 [5] 陈敏, 范水勇, 郑祚芳, 等. 基于BJ-RUC系统的临近探空及其对强对流发生潜势预报的指示性能初探. 气象学报, 2011, 69(1): 181-194. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101016.htmChen M, Fan S Y, Zheng Z F, et al. The performance of the proximity sounding based on the BJ-RUC system and its preliminary implementation in the convective potential forecast. Acta Meteor Sinica, 2011, 69(1): 181-194. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101016.htm [6] 田生春, 杜长萱. 北京地区暴雨时各层温、湿、风的统计特性. 大气科学, 1983, 7(1): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198301007.htmTian S C, Du C X. Effect of merging of the convective cloud clusters on occurrence of heavy rainfall. Chinese J Atmos Sci, 1983, 7(1): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198301007.htm [7] 廖晓农, 俞小鼎, 于波. 北京盛夏一次罕见的大雹事件分析. 气象, 2008, 34(2): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200802003.htmLiao X N, Yu X D, Yu B. Analysis on infrequent big hail event in Beijing Area. Meteor Mon, 2008, 34(2): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200802003.htm [8] 叶爱芬, 武志方, 肖伟军, 等. 对流有效位能在强对流预报中的研究. 热带气象学报, 2006, 22(5): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200605011.htmYe A F, Wu Z F, Xiao W J, et al. A study of application of CAPE in severe convective weather prediction. J Appl Trop Meteor, 2006, 22(5): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200605011.htm [9] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205 [10] 曾明剑, 王桂臣, 吴海英, 等. 基于中尺度数值模式的分类强对流天气预报方法研究. 气象学报, 2015, 73(5): 868-882. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201505005.htmZeng M J, Wang G C, Wu H Y, et al. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model. Acta Meteor Sinica, 2015, 73(5): 868-882. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201505005.htm [11] 魏东, 孙继松, 雷蕾, 等. 用微波辐射计和风廓线资料构建探空资料的定量应用可靠性分析. 气候与环境研究, 2011, 16(6): 697-706. doi: 10.3878/j.issn.1006-9585.2011.06.03Wei D, Sun J S, Lei L, et al. Reliability analysis of quantitative applications of sounding constructed from data detected by microwave radiometer and wind profiler. Climatic and Environmental Research, 2011, 16(6): 697-706. doi: 10.3878/j.issn.1006-9585.2011.06.03 [12] 刘红亚, 薛纪善, 沈桐立, 等. 探空气球漂移及其对数值预报影响的研究. 应用气象学报, 2005, 16(4): 518-526. doi: 10.3969/j.issn.1001-7313.2005.04.013Liu H Y, Xue J S, Shen T L, et al. Study on sounding balloon drifting and its impact on numerical predictions. J Appl Meteor Sci, 2005, 16(4): 518-526. doi: 10.3969/j.issn.1001-7313.2005.04.013 [13] 张雪芬, 王志诚, 茆佳佳, 等. 微波辐射计温湿廓线反演方法改进试验. 应用气象学报, 2020, 31(4): 385-396. doi: 10.11898/1001-7313.20200401Zhang X F, Wang Z C, Mao J J, et al. Experiments on improving temperature and humidity profile retrieval for ground-based microwave radiometer. J Appl Meteor Sci, 2020, 31(4): 385-396. doi: 10.11898/1001-7313.20200401 [14] 尉英华, 王艳春, 朱磊磊, 等. 基于融合资料的天津短时强降水环境物理量可信度及特征分析. 沙漠与绿洲气象, 2020, 14(5): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202005011.htmWei Y H, Wang Y C, Zhu L L, et al. Confidence and characteristics of short-duration heavy rainfall environmental parameters based on merging data in Tianjin. Desert Oasis Meteor, 2020, 14(5): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202005011.htm [15] 田付友, 郑永光, 张涛, 等. 短时强降水诊断物理量敏感性的点对面检验. 应用气象学报, 2015, 26(4): 385-396. doi: 10.11898/1001-7313.20150401Tian F Y, Zheng Y G, Zhang T, et al. Sensitivity analysis of short-duration heavy rainfall related diagnostic parameters with point-area verification. J Appl Meteor Sci, 2015, 26(4): 385-396. doi: 10.11898/1001-7313.20150401 [16] 孔凡超, 李江波, 王颖. 北京冬奥会云顶赛场微波辐射计反演大气温湿廓线分析. 气象, 2021, 47(9): 1062-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202109003.htmKong F C, Li J B, Wang Y. Analysis on atmospheric profiles retrieved by microwave radiometer at genting venue of Beijing Olympic Winter Games. Meteor Mon, 2021, 47(9): 1062-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202109003.htm [17] 陈树成, 李晓波, 崔明, 等. 不同天气条件下微波辐射计和风廓线雷达数据误差特征分析. 气象与环境学报, 2021, 31(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202101009.htmChen S C, Li X B, Cui M, et al. Error analysis of detection data of microwave radiometer and wind profiler radar under different weather conditions. J Meteor Environ, 2021, 31(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202101009.htm [18] 徐桂荣, 崔春光, 周志敏, 等. 利用探空资料估算青藏高原及下游地区大气边界层高度. 暴雨灾害, 2014, 33(3): 217-227. doi: 10.3969/j.issn.1004-9045.2014.03.004Xu G R, Cui C G, Zhou Z M, et al. Atmospheric boundary layer heights estimated from radiosonde observations in the Qinghai-Tibet Plateau and its downstream areas. Torrential Rain Disaster, 2014, 33(3): 217-227. doi: 10.3969/j.issn.1004-9045.2014.03.004 [19] 王志诚, 张雪芬, 茆佳佳, 等. 不同天气条件下地基微波辐射计探测性能比对. 应用气象学报, 2018, 29(3): 282-295. doi: 10.11898/1001-7313.20180303Wang Z C, Zhang X F, Mao J J, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. doi: 10.11898/1001-7313.20180303 [20] Westwater E R, Han Y, Irisov V G, et al. Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiments. J Atmos Oceanic Technol, 1999, 16(7): 805-818. doi: 10.1175/1520-0426(1999)016<0805:RSOBLT>2.0.CO;2 [21] 林晓萌, 尉英华, 陈宏, 等. 降水时风廓线雷达风场反演效果评估. 应用气象学报, 2020, 31(3): 361-372. doi: 10.11898/1001-7313.20160307Lin X M, Wei Y H, Chen H, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. doi: 10.11898/1001-7313.20160307 [22] 何平. 相控阵风廓线雷达. 北京: 气象出版社, 2020.He P. Phased Array Wind Profile Rader. Beijing: China Meteorological Press, 2020. [23] Stanley G B, Barry E S, Eduard J S, et al. The value of wind profiler data in US weather forecasting. Bull Amer Meteor Soc, 2004, 85(12): 1871-1886. doi: 10.1175/BAMS-85-12-1871 [24] 何平. 功率谱估计基础. 北京: 气象出版社, 2015.He P. Foundation of Power Spectrum Estimation. Beijing: China Meteorological Press, 2015. [25] 董丽萍, 吴蕾, 王令, 等. 风廓线雷达组网资料初步对比分析. 气象, 2014, 40(9): 1145-1151. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409013.htmDong L P, Wu L, Wang L, et al. Preliminary comparison research of the wind profile radar network data. Meteor Mon, 2014, 40(9): 1145-1151. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409013.htm [26] 李丰, 阮征, 王红艳, 等. 基于功率谱的风廓线雷达回波强度定标方法. 应用气象学报, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305Li F, Ruan Z, Wang H Y, et al. A calibration method of wind profile radar echo intensity with Doppler velocity spectrum. J Appl Meteor Sci, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305 [27] Furumoto J, Iwai S, Fujii H, et al. Estimation of humidity profiles with the L-band boundary layer radar-RASS measurement. J Meteor Soc Japan, 2005, 83(5): 895-908. doi: 10.2151/jmsj.83.895 [28] Furumoto J, Imura S, Tsuda T, et al. The variational assimilation method for the retrieval of humidity profiles with the wind-profiling radar. Atmos Oceanic Technol, 2007, 24(9): 1525-1545. doi: 10.1175/JTECH2074.1 [29] Bianco L, Cimini D, Marzano F S, et al. Combining microwave radiometer and wind profiler radar measure for high-resolution atmospheric humidity profiling. Atmos Oceanic Technol, 2005, 22(7): 949-965. doi: 10.1175/JTECH1771.1 [30] Stankov B B, Gossard E E, Weber B L, et al. Humidity gradient profiles from wind profiling radars using the NOAA/ETL advanced Signal Processing System(SPS). Atmos Oceanic Technol, 2003, 20(1): 3-22. doi: 10.1175/1520-0426(2003)020<0003:HGPFWP>2.0.CO;2 [31] Imura S, Furumoto J, Tsuda T, et al. Estimation of humidity profiles by combining co-locate VHF and UHF wind-profiling radar observation. J Meteor Soc Japan, 2007, 85(3): 301-319. doi: 10.2151/jmsj.85.301 [32] Clayson C A, Lakshmi K. On turbulence and mixing in the free at mosphere inferred from high-resolution soundings. Atmos Oceanic Technol, 2008, 25: 833-852. doi: 10.1175/2007JTECHA992.1 [33] 孙康远, 阮征, 魏鸣, 等. 风廓线雷达反演大气比湿廓线的初步试验. 应用气象学报, 2013, 24(4): 407-415. doi: 10.3969/j.issn.1001-7313.2013.04.003Sun K Y, Ruan Z, Wei M, et al. Preliminary estimation of specific humidity profiles with wind profile radar. J Appl Meteor Sci, 2013, 24(4): 407-415. doi: 10.3969/j.issn.1001-7313.2013.04.003 [34] 曹玉静, 刘晶淼, 梁宏, 等. 基于无线电探空资料反演大气水汽资源的垂直层结特性. 自然资源学报, 2011, 26(9): 1603-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201109016.htmCao Y J, Liu J M, Liang H, et al. Water vapor resource vertical stratification characteristics retrieved basing on the radiosonde datum. J Nat Res, 2011, 26(9): 1603-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201109016.htm [35] 朱庚华, 张彩云, 翁宁泉, 等. 利用风廓线雷达测量数据反演大气湿度廓线. 大气与环境光学学报, 2011, 6(5): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201105005.htmZhu G H, Zhang C Y, Weng N Q, et al. Retrieve the atmospheric humidity profile from wind profile radar data. J Atmosph Environ Opt, 2011, 6(5): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201105005.htm [36] 张秋晨, 龚佃利, 冯俊杰. RPG-HATPRO-G3地基微波辐射计反演产品评估. 海洋气象学报, 2017, 37(1): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201701012.htmZhang Q C, Gong D L, Feng J J. Analysis and evaluation of retrieval products of RPG-HATPRO-G3 ground-based microwave radiometers. J Marine Meteor, 2017, 37(1): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201701012.htm [37] 唐仁茂, 陈英英, 叶建元. 探空、地面及卫星资料反演水汽含量的比较. 气象科学, 2010, 30(3): 373-377. doi: 10.3969/j.issn.1009-0827.2010.03.013Tang R M, Cheng Y Y, Ye J Y. The comparison of water vapor content retrieved by radiosonde, ground station and satellite data. J Meteor Sci, 2010, 30(3): 373-377. doi: 10.3969/j.issn.1009-0827.2010.03.013 [38] 阮征, 高祝宇, 李丰, 等. 风廓线雷达与天气雷达风廓线数据的融合及应用. 气象, 2017, 43(10): 1213-1223. doi: 10.7519/j.issn.10000526.2017.10.005Ruan Z, Gao Z Y, Li F, et al. Integration and application of wind profiles for wind-profiling radar and weather radar. Meteor Mon, 2017, 43(10): 1213-1223. doi: 10.7519/j.issn.10000526.2017.10.005 [39] 林晓萌, 何平, 黄兴友. 一种抑制降水对风廓线雷达水平风干扰的方法. 应用气象学报, 2015, 26(1): 66-75. doi: 10.11898/1001-7313.20150107Lin X M, He P, Huang X Y. A method to suppress the precipitation interference on horizontal wind of wind profile radar. J Appl Meteor Sci, 2015, 26(1): 66-75. doi: 10.11898/1001-7313.20150107 [40] 董佳阳, 崔晔, 阮征, 等. 对流降水云中大气垂直运动反演及个例试验. 应用气象学报, 2022, 33(2): 167-179. doi: 10.11898/1001-7313.20220204Dong J Y, Cui Y, Ruan Z, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. doi: 10.11898/1001-7313.20220204 [41] 姚文, 马颖, 高丽娜. L波段与59-701探空系统相对湿度对比分析. 应用气象学报, 2017, 28(2): 218-226. doi: 10.11898/1001-7313.20170209Yao W, Ma Y, Gao L N. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. doi: 10.11898/1001-7313.20170209 [42] Ma R Y, Sun J H, Yang X L. An eight-year climatology of the warm-season severe thunderstorm environments over North China. Atmos Res, 2021, 254: 1-13. [43] Zhang N, Wang Y, Lin X M. Mesoscale observational analysis of isolated convection associated with the interaction of the sea breeze front and the gust front in the context of the urban heat humid island effect. Atmosphere, 2022, 603: 1-15. [44] Zhang N, Wang Y. Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat island. Meteor Atmos Phys, 2021, 133: 1143-1157. doi: 10.1007/s00703-021-00800-6 [45] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估. 海洋气象学报, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htmMeng X G, Guo J J, Han Y Q. Preliminarily assessment of ERA5 reanalysis data. J Marine Meteor, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm