留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用深度学习填补双偏振雷达回波遮挡

尹晓燕 胡志群 郑佳锋 左园园 皇甫江 朱永杰

尹晓燕, 胡志群, 郑佳锋, 等. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报, 2022, 33(5): 581-593. DOI:  10.11898/1001-7313.20220506..
引用本文: 尹晓燕, 胡志群, 郑佳锋, 等. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报, 2022, 33(5): 581-593. DOI:  10.11898/1001-7313.20220506.
Yin Xiaoyan, Hu Zhiqun, Zheng Jiafeng, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. DOI:  10.11898/1001-7313.20220506.
Citation: Yin Xiaoyan, Hu Zhiqun, Zheng Jiafeng, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. DOI:  10.11898/1001-7313.20220506.

利用深度学习填补双偏振雷达回波遮挡

DOI: 10.11898/1001-7313.20220506
资助项目: 

国家重点研发计划 2019YFC1510304

广东省重点领域研发计划 2020B1111200001

中国气象局大气探测重点开放实验室开放课题 U2021Z05

河北省省级科技计划 19275408D

青年科学基金项目 42105141

详细信息
    通信作者:

    胡志群, 邮箱:huzq@cma.gov.cn

Filling in the Dual Polarization Radar Echo Occlusion Based on Deep Learning

  • 摘要: 广州S波段双偏振天气雷达低仰角多方位存在遮挡,高仰角也存在部分遮挡。基于卷积神经网络等深度学习方法,构建垂直填补(vertical echo-filling,VEF)和水平填补(horizontal echo-filling,HEF)网络架构,基于两种架构,利用无遮挡区的反射率因子ZH、差分反射率ZDR,差传播相移率KDP构建训练集,填补遮挡区的ZHZDR。针对仅0.5°仰角存在遮挡的区域,基于VEF架构,利用上层多个仰角、径向、距离库的三维数据,分距离段训练垂直填补模型。针对遮挡仰角较高的区域,则基于HEF架构,利用同一仰角左右相邻的多个径向、距离库的数据,分遮挡径向训练水平填补模型。根据解释方差、平均绝对偏差和相关系数3个指标和3个个例,对模型效果进行评估。结果表明:ZH填补模型的解释方差最大为0.92,平均绝对偏差最小为1.69 dB,相关系数最高为0.96;ZDR填补模型的解释方差最大为0.92,平均绝对偏差最小为0.12 dB,相关系数最高为0.96。利用该研究构建的深度学习填补架构,可有效填补偏振雷达遮挡区域回波,提高雷达数据质量。
  • 图  1  通过地理高程数据计算的广州CINRAD/SAD雷达0.5°仰角(a)和1.5°仰角(b)遮挡系数

    (相邻距离圈相距30 km)

    Fig. 1  Occlusion coefficient of 0.5° elevation(a) and 1.5° elevation(b) of Guangzhou CINRAD/SAD calculated from geographic elevation data

    (the distance between adjacent rings is 30 km)

    图  2  VEF(a)和HEF(b)网络架构

    Fig. 2  VEF(a) and HEF(b) network architecture

    图  3  ZHZDR垂直填补模型不同距离训练模型的估算值和真实值散点图

    (色标为高斯核密度估计值)

    Fig. 3  Plots of predicted and observed echo reflectivity of each section with ZH and ZDR vertical echo-filling models

    (color mark denotes Gaussian kernel density estimation)

    图  4  ZHZDR水平填补模型不同填补径向数的模型估算值和真实值散点图

    (色标为高斯核密度估计值)

    Fig. 4  Plots of predicted and observed echo reflectivity of different fill radial numbers with ZH and ZDR horizontal echo-filling models

    (color mark denotes Gaussian kernel density estimation)

    图  5  2019年8月25日11:36模型填补效果对比0.5°仰角PPI图

    (红色椭圆内为明显遮挡区域,下同)
    (a)ZH真实值,(b)ZH估算值,(c)ZDR真实值,(d)ZDR估算值

    Fig. 5  PPI images of echo-filling result comparison of 0.5° elevation at 1136 UTC 25 Aug 2019

    (red ellipse denotes the obvious blocked area, the same as in after)
    (a)observed ZH, (b)predicted ZH, (c)observed ZDR, (d)predicted ZDR

    图  6  2020年6月6日08:54模型填补效果对比0.5°仰角PPI图

    (a)ZH真实值,(b)ZH估算值,(c)ZDR真实值,(d)ZDR估算值

    Fig. 6  PPI images of echo-filling result comparison of 0.5° elevation at 0854 UTC 6 Jun 2020

    (a)observed ZH, (b)predicted ZH, (c)observed ZDR, (d)predicted ZDR

    图  7  2019年5月8日03:54模型填补效果对比0.5°仰角PPI图

    (a)ZH真实值,(b)ZH估算值,(c)ZDR真实值,(d)ZDR估算值

    Fig. 7  PPI images of echo-filling result comparison of 0.5° elevation at 0354 UTC 8 May 2019

    (a)observed ZH, (b)predicted ZH, (c)observed ZDR, (d)predicted ZDR

    表  1  ZHZDR垂直填补模型不同距离段评估结果

    Table  1  Evaluation of each section in ZH and ZDR vertical echo-filling models

    填补量 距离段/km 解释方差 平均绝对偏差/dB 相关系数
    ZH [20, 54) 0.9116 1.7947 0.9572
    [54, 68) 0.9155 1.7251 0.9634
    [68, 88) 0.8956 1.7210 0.9526
    [88, 120] 0.8206 2.2630 0.9208
    ZDR [20, 54) 0.8762 0.1520 0.9240
    [54, 68) 0.8564 0.1204 0.8971
    [68, 88) 0.8538 0.1228 0.9083
    [88, 120] 0.8308 0.1440 0.8683
    下载: 导出CSV

    表  2  ZHZDR水平填补模型不同填补径向数的评估结果

    Table  2  Evaluation of different fill radial numbers in ZH and ZDR horizontal echo-filling models

    填补量 遮挡径向数 解释方差 平均绝对偏差/dB 相关系数
    ZH 3 0.9228 1.6973 0.9615
    5 0.8342 2.1143 0.9227
    ZDR 3 0.9254 0.1189 0.9639
    5 0.8542 0.1275 0.9333
    下载: 导出CSV

    表  3  2019年8月25日11:36无遮挡区回波填补不同距离段评估结果

    Table  3  Evaluation of echo-filling of each section in the unblocked area at 1136 UTC 25 Aug 2019

    填补量 距离段/km 解释方差 平均绝对偏差/dB 相关系数
    ZH [20, 54) 0.9031 1.0245 0.9567
    [54, 68) 0.9094 1.0267 0.9632
    [68, 88) 0.8250 2.0311 0.9102
    [88, 120] 0.7851 2.1401 0.8816
    ZDR [20, 54) 0.9015 0.0315 0.9211
    [54, 68) 0.9242 0.0309 0.9012
    [68, 88) 0.8240 0.0353 0.8743
    [88, 120] 0.7789 0.0328 0.8674
    下载: 导出CSV

    表  4  2020年6月6日08:54无遮挡区回波填补不同距离段的评估结果

    Table  4  Evaluation of echo-filling of each section in the unblocked area at 0854 UTC 6 Jun 2020

    填补量 距离段/km 解释方差 平均绝对偏差/dB 相关系数
    ZH [20, 54) 0.9311 1.4654 0.9457
    [54, 68) 0.9594 2.0431 0.9341
    [68, 88) 0.8950 2.1143 0.9019
    [88, 120] 0.8854 2.3496 0.8942
    ZDR [20, 54) 0.9592 0.0312 0.9732
    [54, 68) 0.9321 0.0207 0.9643
    [68, 88) 0.9034 0.0236 0.9325
    [88, 120] 0.8811 0.0413 0.9078
    下载: 导出CSV

    表  5  2019年5月8日03:54无遮挡区回波填补不同距离段的评估结果

    Table  5  Evaluation of echo-filling of each section in the unblocked area at 0354 UTC 8 May 2019

    填补量 距离段/km 解释方差 平均绝对偏差/dB 相关系数
    ZH [20, 54) 0.9330 1.0309 0.9681
    [54, 68) 0.9121 1.0331 0.9616
    [68, 88) 0.9345 2.0154 0.9473
    [88, 120] 0.8708 2.3480 0.9126
    ZDR [20, 54) 0.9865 0.0333 0.9618
    [54, 68) 0.9618 0.0243 0.9679
    [68, 88) 0.9097 0.0251 0.9402
    [88, 120] 0.8602 0.0381 0.9231
    下载: 导出CSV
  • [1] 黄兴友, 马雷, 杨敏, 等.利用空间相关性进行天气雷达波束阻挡数据的识别和订正.气象科学, 2019, 39(4):532-539. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201904011.htm

    Huang X Y, Ma L, Yang M, et al. Recognition and correction of beam blockage of weather radar based on spatial correlation. J Meteor Sci, 2019, 39(4): 532-539. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201904011.htm
    [2] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [3] Shakti P C, Maki M, Shimizu S, et al. Correction of reflectivity in the presence of partial beam blockage over a mountainous region using X-band dual polarization radar. J Hydrometeor, 2013, 14(3): 744-764. doi:  10.1175/JHM-D-12-077.1
    [4] Germann U, Galli G, Boscacci M, et al. Radar precipitation measurement in a mountainous region. Quart J Roy Meteor Soc, 2006, 132(618): 1669-1692. doi:  10.1256/qj.05.190
    [5] 吴翠红, 万玉发, 吴涛, 等. 雷达回波垂直廓线及其生成方法. 应用气象学报, 2006, 17(2): 232-239. doi:  10.3969/j.issn.1001-7313.2006.02.014

    Wu C H, Wan Y F, Wu T, et al. Vertical profile of radar echo and its determination methods. J Appl Meteor Sci, 2006, 17(2): 232-239. doi:  10.3969/j.issn.1001-7313.2006.02.014
    [6] Tabary P. The new French operational radar rainfall product. Part Ⅰ: Methodology. Wea Forecasting, 2007, 22(3): 393-408. doi:  10.1175/WAF1004.1
    [7] Battan L J. Radar Observation of the Atmosphere. Chicago: The University of Chicago Press, 1973.
    [8] 罗丽, 井高飞, 郭佳, 等. 北京气象局天气雷达回波阻挡订正技术研究. 科学技术与工程, 2016, 16(12): 12-19. doi:  10.3969/j.issn.1671-1815.2016.12.003

    Luo L, Jing G F, Guo J, et al. Study on weather radar echo block correction technology of Beijing Meteorological Bureau. Sci Technol Eng, 2016, 16(12): 12-19. doi:  10.3969/j.issn.1671-1815.2016.12.003
    [9] Lee J, Jung S H, Kim H L, et al. Improved rainfall estimation based on corrected radar reflectivity in partial beam blockage area of S-band dual-polarization radar. Korean Meteor Soc, 2017, 27(4): 467-481.
    [10] 杨洪平, 张沛源, 程明虎, 等. 多普勒天气雷达组网拼图有效数据区域分析. 应用气象学报, 2009, 20(1): 47-55. doi:  10.3969/j.issn.1001-7313.2009.01.006

    Yang H P, Zhang P Y, Cheng M H, et al. The valid mosaic data region of the CINRAD network. J Appl Meteor Sci, 2009, 20(1): 47-55. doi:  10.3969/j.issn.1001-7313.2009.01.006
    [11] Andrieu H, Creutin J D, Delrieu G, et al. Use of a weather radar for the hydrology of a mountainous area. Part Ⅰ: Radar measurement interpretation. J Hydrol, 1997, 193: 1-25. doi:  10.1016/S0022-1694(96)03202-7
    [12] Creutin J D, Andrieu H, Faure D. Use of a weather radar for the hydrology of a mountainous area. Part Ⅱ: Radar measurement validation. J Hydrol, 1997, 193: 26-44. doi:  10.1016/S0022-1694(96)03203-9
    [13] 杨泷, 刘黎平, 王红艳. 利用反射率因子垂直廓线填补雷达波束遮挡区的方法研究. 气象科技, 2015, 43(5): 788-793. doi:  10.3969/j.issn.1671-6345.2015.05.003

    Yang L, Liu L P, Wang H Y. Filling-up of occultation regions using vertical profile of reflectivity factor. Meteor Sci Technol, 2015, 43(5): 788-793. doi:  10.3969/j.issn.1671-6345.2015.05.003
    [14] Ryzhkov A V, Giangrande S E, Melnikov V M, et al. Calibration issues of dual-polarization radar measurements. J Atmos Oceanic Technol, 2005, 22(8): 1138-1155. doi:  10.1175/JTECH1772.1
    [15] Lang T J, Nesbitt S W, Carey L D. On the correction of partial beam blockage in polarimetric radar data. J Atmos Oceanic Technol, 2009, 26(5): 943-957. doi:  10.1175/2008JTECHA1133.1
    [16] Zhang P, Zrnic D, Ryzhkov A. Partial beam blockage correction using polarimetric radar measurements. J Atmos Oceanic Technol, 2013, 30(5): 861-872. doi:  10.1175/JTECH-D-12-00075.1
    [17] 蔡金圻, 谭桂容, 牛若芸. 基于迁移CNN的江淮持续性强降水环流分型. 应用气象学报, 2021, 32(2): 233-244. doi:  10.11898/1001-7313.20210208

    Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J Appl Meteor Sci, 2021, 32(2): 233-244. doi:  10.11898/1001-7313.20210208
    [18] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101

    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [19] 赵琳娜, 卢姝, 齐丹, 等. 基于全连接神经网络方法的日最高气温预报. 应用气象学报, 2022, 33(3): 257-269. doi:  10.11898/1001-7313.20220301

    Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi:  10.11898/1001-7313.20220301
    [20] 金子琪, 王新敏, 鲍艳松, 等. 基于卷积神经网络的飑线识别算法. 应用气象学报, 2021, 32(5): 580-591. doi:  10.11898/1001-7313.20210506

    Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi:  10.11898/1001-7313.20210506
    [21] Chen H, Chandrasekar V, Tan H, et al. Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks. Geophys Res Lett, 2019, 46(17/18): 10669-10678.
    [22] 郭瀚阳, 陈明轩, 韩雷, 等. 基于深度学习的强对流高分辨率临近预报试验. 气象学报, 2019, 77(4): 715-727. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904009.htm

    Guo H Y, Chen M X, Han L, et al. High-resolution nowcasting experiment of strong convection based on deep learning. Acta Meteor Sinica, 2019, 77(4): 715-727. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904009.htm
    [23] Singh S, Sarkar S, Mitra P. A Deep Learning Based Approach with Adversarial Regularization for Doppler Weather Radar ECHO Prediction. 2017 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2017: 5205-5208.
    [24] 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用. 应用气象学报, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106

    Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [25] Yin X Y, Hu Z Q, Zheng J F, et al. Study on radar echo-filling in an occlusion area by a deep learning algorithm. Remote Sens, 2021, 13(9): 1779. doi:  10.3390/rs13091779
    [26] 米前川, 高西宁, 李钥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109

    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [27] 刘黎平, 吴林林, 杨引明. 基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析. 气象学报, 2007, 65(2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702010.htm

    Liu L P, Wu L L, Yang Y M. Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor Sinica, 2007, 65(2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702010.htm
    [28] 李丰, 刘黎平, 王红艳, 等. S波段多普勒天气雷达非降水气象回波识别. 应用气象学报, 2012, 23(2): 147-158. http://qikan.camscma.cn/article/id/20120203

    Li F, Liu L P, Wang H Y, et al. Identification of non-precipitation meteorological echoes with Doppler weather radar. J Appl Meteor Sci, 2012, 23(2): 147-158. http://qikan.camscma.cn/article/id/20120203
    [29] 文浩, 刘黎平, 张扬. 多普勒天气雷达地物回波识别算法改进. 高原气象, 2017, 36(3): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201703014.htm

    Wen H, Liu L P, Zhang Y. Improvements of ground clutter identification algorithm for Doppler weather radar. Plateau Meteor, 2017, 36(3): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201703014.htm
    [30] 曹西娟. 模糊时间序列在钻井风险概率中的预测及应用. 成都: 西南石油大学, 2018.

    Chao X J. Prediction and Application of Fuzzy Time Series in Drilling Risk Probability. Chengdu: Southwest Petroleum University, 2018.
    [31] 王红艳. 新一代天气雷达组网估算降水的覆盖能力分析法研究. 北京: 中国气象科学研究院, 2015.

    Wang H Y. Assessment of Coverage Ability and Research of Methods for Regional Mosaic QPE of CINRAD. Beijing: Chinese Academy of Meteorological Sciences, 2015.
    [32] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 11(4): 541-551.
    [33] 黄丽梅, 王武, 林琼斌, 等. 基于核密度估计分类器的变换器故障诊断方法. 电网技术, 2019, 43(6): 2204-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201906044.htm

    Huang L M, Wang W, Lin Q B, et al. Fault diagnosis method of converter based on kernel density estimation classifier. Power System Technol, 2019, 43(6): 2204-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201906044.htm
  • 加载中
图(7) / 表(5)
计量
  • 摘要浏览量:  1837
  • HTML全文浏览量:  230
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-06-15
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回