留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋热带气旋生成客观预测模型

郑倩 高猛

郑倩, 高猛. 西北太平洋热带气旋生成客观预测模型. 应用气象学报, 2022, 33(5): 594-603. DOI:  10.11898/1001-7313.20220507..
引用本文: 郑倩, 高猛. 西北太平洋热带气旋生成客观预测模型. 应用气象学报, 2022, 33(5): 594-603. DOI:  10.11898/1001-7313.20220507.
Zheng Qian, Gao Meng. An objective prediction model for tropical cyclone genesis in the Northwest Pacific. J Appl Meteor Sci, 2022, 33(5): 594-603. DOI:  10.11898/1001-7313.20220507.
Citation: Zheng Qian, Gao Meng. An objective prediction model for tropical cyclone genesis in the Northwest Pacific. J Appl Meteor Sci, 2022, 33(5): 594-603. DOI:  10.11898/1001-7313.20220507.

西北太平洋热带气旋生成客观预测模型

DOI: 10.11898/1001-7313.20220507
资助项目: 

山东中国科学院海洋大科学研究中心重点部署项目 COMS2019J02

中国科学院前沿科学重点研究计划“从0到1”原始创新项目 ZDBS-LY-7010

山东省自然科学基金项目 ZR2020KF031

山东省自然科学基金项目 ZR2020QD055

详细信息
    通信作者:

    高猛, 邮箱:gaomeng03@hotmail.com

An Objective Prediction Model for Tropical Cyclone Genesis in the Northwest Pacific

  • 摘要: 该文提出一种西北太平洋热带气旋年生成活动的客观预测模型。研究大尺度环境因子对西北太平洋热带气旋年生成频次的作用,使用最小角回归算法对初始14个预测因子进行选择和降维,将资料集分为训练集(1979—2015年)和验证集(2016—2020年),建立随机森林回归模型预测热带气旋年生成频次。分析环境因子对西北太平洋热带气旋生成位置的作用,使用逐步回归算法筛选影响显著的预测因子,建立局部泊松回归模型预测热带气旋生成空间位置的概率。结果表明:随机森林回归模型可以预测西北热带气旋频次的主要变化和趋势,揭示环境因子对西北太平洋热带气旋年生成频次的影响。局部泊松回归模型对于气旋生成位置概率有一定预测能力。利用随机森林回归模型和局部泊松回归模型模拟1979—2020年西北太平洋热带气旋生成,结果与观测基本一致,可见模型可为热带气旋危险性分析提供参考。
  • 图  1  西北太平洋热带气旋年生成频次与海表温度相关分析

    (填色,仅显示达到0.05显著性水平的相关系数)(方框表示预测因子的位置)

    Fig. 1  Correlations between the annual frequency of tropical cyclone in the Northwestern Pacific and sea surface temperature

    (the shaded, only correlations passing the test of 0.05 level are given) (the box denotes the predictor location)

    图  2  西北太平洋热带气旋年生成频次与夏秋季大尺度环境因子相关分析

    (填色,仅显示达到0.05显著性水平的相关系数)(方框表示预测因子的位置)

    Fig. 2  Correlations between the annual frequency of tropical cyclone in the Northwestern Pacific and the large-scale environmental factors from Jun to Nov

    (the shaded, only correlations passing the test of 0.05 level are given)(the box denotes the predictor location)

    图  3  西北太平洋热带气旋年生成频次的预测结果

    Fig. 3  The predicted tropical cyclone annual frequency in the Northwest Pacific

    图  4  热带气旋生成位置的观测及预测概率

    Fig. 4  Observed and predicted probability of tropical cyclone genesis location

    图  5  热带气旋生成位置的观测与模拟

    Fig. 5  Observed and simulated tropical cyclone genesis position location

    表  1  预测因子

    Table  1  Selected predictors

    预测因子 相关系数 描述
    X1 -0.53 12°~22°N, 35°~60°W区域平均春季海温异常
    X2 -0.50 3°~12°S, 45°~52°E区域平均春季海温异常
    X3 -0.48 20°~30°S, 155°~175°E区域平均夏秋季海温异常
    X4 0.45 30°~40°N,130°~140°W区域平均夏秋季海表温度异常
    X5 -0.57 10°~23°N,130°~150°E区域平均夏秋季500 hPa高度场异常
    X6 -0.56 24°~32°N,180°~210°W区域平均夏秋季500 hPa高度场异常
    X7 -0.61 20°~30°N,127°~140°E区域平均夏秋季600 hPa相对湿度异常
    X8 0.57 16°~26°N,155°~165°W区域平均夏秋季600 hPa相对湿度异常
    X9 0.63 16°~22°N,128°~152°E区域平均春季850 hPa相对涡度异常
    X10 -0.62 4°~12°N,130°~140°E区域平均夏秋季850 hPa与250 hPa纬向风垂直切变
    X11 0.45 10°~17°N,157°E~177°W区域平均夏秋季850 hPa与250 hPa纬向风垂直切变
    X12 -0.09 春季Nio3.4海温
    X13 0.09 夏秋季平流层准两年振荡指数
    X14 0.06 前年夏秋季南方涛动指数
    下载: 导出CSV

    表  2  预测因子重要性排序

    Table  2  Importance ranking of predictors

    因子 重要性
    X2 0.247933
    X10 0.174951
    X7 0.170453
    X5 0.120027
    X9 0.113977
    X13 0.067993
    X11 0.061185
    X4 0.043481
    下载: 导出CSV

    表  3  最优半径

    Table  3  Optimized scale

    月份 最优半径/km
    1 1200
    2 1500
    3 1400
    4 1300
    5 1200
    6 1100
    7 900
    8 800
    9 800
    10 900
    11 1100
    12 1200
    下载: 导出CSV
  • [1] 李欣, 张璐.北上台风强降水形成机制及微物理特征.应用气象学报, 2022, 33(1):29-42. doi:  10.11898/1001-7313.20220103

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [2] 井喜, 贺文彬, 毕旭, 等. 远距离台风影响陕北突发性暴雨成因分析. 应用气象学报, 2005, 16(5): 655-662. doi:  10.3969/j.issn.1001-7313.2005.05.012

    Jing X, He W B, Bi X, et al. Analysis of the abrupt rainstorm in north Shaanxi in relation to typhoon far away. J Appl Meteor Sci, 2005, 16(5): 655-662. doi:  10.3969/j.issn.1001-7313.2005.05.012
    [3] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [4] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [5] Noy I. The socio-economics of cyclones. Nature Clim Change, 2016, 6: 343-345. doi:  10.1038/nclimate2975
    [6] Zhang Q, Wu L, Liu Q. Tropical cyclone damages in China 1983-2006. Bull Amer Meteor Soc, 2009, 90(4): 489-496. doi:  10.1175/2008BAMS2631.1
    [7] 张永恒, 范广洲, 马清云, 等. 浙江省台风灾害影响评估模型. 应用气象学报, 2009, 20(6): 772-776. doi:  10.3969/j.issn.1001-7313.2009.06.017

    Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi:  10.3969/j.issn.1001-7313.2009.06.017
    [8] 矫梅燕, 龚建东, 周兵, 等. 天气预报的业务技术进展. 应用气象学报, 2006, 17(5): 594-601. doi:  10.3969/j.issn.1001-7313.2006.05.009

    Jiao M Y, Gong J D, Zhou B, et al. An overview of the development of weather forecasting. J Appl Meteor Sci, 2006, 17(5): 594-601. doi:  10.3969/j.issn.1001-7313.2006.05.009
    [9] 陈联寿. 热带气旋研究和业务预报技术的发展. 应用气象学报, 2006, 17(6): 672-681. doi:  10.3969/j.issn.1001-7313.2006.06.005

    Chen L S. The evolution on research and operational forecasting techniques of tropical cyclones. J Appl Meteor Sci, 2006, 17(6): 672-681. doi:  10.3969/j.issn.1001-7313.2006.06.005
    [10] 王诗文. 国家气象中心台风数值模式的改进及其应用试验. 应用气象学报, 1999, 10(3): 347-353. doi:  10.3969/j.issn.1001-7313.1999.03.013

    Wang S W. Advances on typhoon numerical model of NMC and applied experiments. J Appl Meteor Sci, 1999, 10(3): 347-353. doi:  10.3969/j.issn.1001-7313.1999.03.013
    [11] 丑纪范. 天气和气候的可预报性. 气象科技进展, 2011, 1(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201102007.htm

    Chou J F. Predictability of weather and climate. Adv Meteor Sci Tech, 2011, 1(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201102007.htm
    [12] Li M, Zhang S Q, Wu L X, et al. An examination of the predictability of tropical cyclone genesis in high-resolution coupled models with dynamically downscaled coupled data assimilation initialization. Adv Atmos Sci, 2020, 37(9): 939-950. doi:  10.1007/s00376-020-9220-9
    [13] 陶祖钰, 赵翠光, 陈敏. 谈谈统计预报的必要性. 气象科技进展, 2016, 6(1): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201601006.htm

    Tao Z Y, Zhao C G, Chen M. The necessity of statistical forecasts. Adv Meteor Sci Tech, 2016, 6(1): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201601006.htm
    [14] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101

    Sun J, Cao Z, Li Heng, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [15] Chen R, Zhang W M, Wang X. Machine learning in tropical cyclone forecast modeling: A review. Atmosphere, 2020, 11(7): 676-704. doi:  10.3390/atmos11070676
    [16] Wang Z, Zhao J, Huang H, et al. A review on the application of machine learning methods in tropical cyclone forecasting. Front Earth Sci, 2022. DOI:  10:10.3389/feart.2022.902596.
    [17] Vickery P J, Skerlj P F, Steckley A C, et al. Hurricane wind field model for use in hurricane simulations. J Struct Eng, 2000, 126(10): 1203-1221. doi:  10.1061/(ASCE)0733-9445(2000)126:10(1203)
    [18] Rumpf J, Weindl H, Höppe P, et al. Stochastic modeling of tropical cyclone tracks. Math Method Oper Res, 2007, 66: 475-490. doi:  10.1007/s00186-007-0168-7
    [19] Rumpf J, Weindl H, Höppe P, et al. Tropical cyclone hazard assessment using model-based track simulation. Nat Hazards, 2009, 48: 383-398. doi:  10.1007/s11069-008-9268-9
    [20] Emanuel K, Ravela S, Vivant E, et al. A statistical deterministic approach to hurricane risk assessment. Bull Amer Meteor Soc, 2006, 87(3): 299-314. doi:  10.1175/BAMS-87-3-299
    [21] 方伟华, 石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述. 地球科学进展, 2012, 27(8): 866-875. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201208005.htm

    Fang W H, Shi X W. A review of stochastic modeling of tropical cyclone track and intensity for disaster risk assessment. Adv Earth Sci, 2012, 27(8): 866-875. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201208005.htm
    [22] Chan J C L, Shi J. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys Res Lett, 1996, 23(20): 2765-2767. doi:  10.1029/96GL02637
    [23] Chan J C L, Liu K S. Global warming and western North Pacific typhoon activity from an observational perspective. J Climate, 2004, 17(23): 4590-4602. doi:  10.1175/3240.1
    [24] Wang B, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific. J Climate, 2002, 15(13): 1643-1658. doi:  10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
    [25] Chen G H, Tam C Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett, 2010, 37(1): L01803.
    [26] Tan J K, Liu H X, Li M Y, et al. A prediction scheme of tropical cyclone frequency based on lasso and random forest. Theor Appl Climatol, 2018, 133: 973-983. doi:  10.1007/s00704-017-2233-3
    [27] 赵军平, 吴立广, 赵海坤, 等. 西北太平洋热带气旋潜在生成指数的改进. 气象科学, 2012, 32(6): 591-599. doi:  10.3969/2012jms.0110

    Zhao J P, Wu L G, Zhao H K, et al. Improvement of tropical cyclone genesis potential index in the western North Pacific Basin. J Meteor Sci, 2012, 32(6): 591-599. doi:  10.3969/2012jms.0110
    [28] Tippett M K, Camargo S J, Sobel A H. A poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J Climate, 2011, 24(9): 2335-2357. doi:  10.1175/2010JCLI3811.1
    [29] 吴甜甜. 基于统计动力学-全路径合成的台风危险性分析方法的优化与验证. 深圳: 哈尔滨工业大学, 2020.

    Wu T T. Optimization and Verification of the Statistical Dynamics-full Track Synthesis Method for Typhoon Hazard Analysis. Shenzhen: Harbin Institute of Technology, 2020.
    [30] Wijnands J S, Shelton K, Kuleshov Y. Improving the operational methodology of tropical cyclone seasonal prediction in the Australian and the South Pacific Ocean regions. Adv Meteor, 2014, 2014(1): 1-8.
    [31] Richman M B, Leslie L M, Ramsay H A, et al. Reducing tropical cyclone prediction errors using machine learning approaches. Procedia Comput Sci, 2017, 114: 314-323. doi:  10.1016/j.procs.2017.09.048
    [32] Liu H, Zhang D L, Chen J, et al. Prediction of tropical cyclone frequency with a wavelet neural network model incorporating natural orthogonal expansion and combined weights. Nat Hazards, 2013, 65(1): 63-78. doi:  10.1007/s11069-012-0343-x
    [33] 海滢. 利用人工神经网络模型预测西北太平洋热带气旋的生成频数和概率. 成都: 成都信息工程大学, 2019.

    Hai Y. Using Artificial Neural Network Model to Predict the Frequency and Probability of Tropical Cyclones in the Northwest Pacific. Chengdu: Chengdu University of Information Technology, 2019.
    [34] Vickery P J, Skerlj P F, Twisdale L A. Simulation of hurricane risk in the US using empirical track model. J Struct Eng ASCE, 2000, 47(10): 2497-2517.
    [35] Yonekura E, Hall T M. A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. J Appl Meteor Climatol, 2011, 50(8): 1725-1739. doi:  10.1175/2011JAMC2617.1
    [36] Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32. doi:  10.1023/A:1010933404324
    [37] Breiman L. Bagging predictors. Mach Learn, 1996, 26(2): 123-140.
    [38] Ho T K. Random Decision Forests. The 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 1995.
    [39] Ho T K. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal, 1998, 20(8): 832-844. doi:  10.1109/34.709601
    [40] Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific. Climate Dyn, 1994, 9(6): 303-319. doi:  10.1007/BF00204745
    [41] Ault T R, Cole J E, Evans M N, et al. Intensified decadal variability in tropical climate during the late 19th century. Geophys Res Lett, 2009, 36(8): 134-150.
    [42] 陈光华, 黄荣辉. 西北太平洋暖池热状态对热带气旋活动的影响. 热带气象学报, 2006, 22(6): 527-532. doi:  10.3969/j.issn.1004-4965.2006.06.002

    Chen G H, Huang R H. The effect of warm pool thermal states on tropical cyclone in west Northwest Pacific. J Trop Meteor, 2006, 22(6): 527-532. doi:  10.3969/j.issn.1004-4965.2006.06.002
    [43] Gray W M. Global view of the origin of tropical disturbances and storms. Mon Wea Rev, 1968, 96(10): 87.
    [44] Lander M. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon Wea Rev, 1994, 122(4): 636-651. doi:  10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
  • 加载中
图(5) / 表(3)
计量
  • 摘要浏览量:  2442
  • HTML全文浏览量:  139
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-08-19
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回