CMA Global Ensemble Prediction Using Singular Vectors from Background Field
-
摘要: 目前中国气象局全球集合预报系统(China Meteorological Administration Global Ensemble Prediction System,CMA-GEPS)利用CMA全球数值预报系统分析场计算奇异向量(ANSV),欧洲中期天气预报中心采用同化背景场计算奇异向量(FCSV),在业务流程上先于计算ANSV,可优化集合预报系统运行时间。为此,在CMA-GEPS中探索采用FCSV进行集合预报的可行性,分析ANSV和FCSV的空间分布及相似指数,进而针对夏秋季节10个个例开展采用ANSV和FCSV的全球集合预报试验,从等压面要素集合预报技巧、中国地区24 h累积降水概率预报技巧、台风路径集合预报技巧、台风中心最低海平面气压预报技巧等方面对比二者结果。结果表明:ANSV和FCSV的主要结构特征相似,两组集合预报结果相当,表明在CMA-GEPS中使用FCSV可行,可作为未来高分辨率CMA-GEPS业务系统建设的选项。
-
关键词:
- 奇异向量;
- CMA全球数值预报系统;
- 集合预报
Abstract: China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) adopts singular vector method to generate initial perturbations. CMA-GEPS currently uses the initial analysis field from CMA Global Forecast System (CMA-GFS) data assimilation to calculate singular vector (ANSV). With this dependency, in the operational running procedures of CMA numerical weather prediction systems, the singular vector calculation starts when CMA-GFS analysis job is finished. With the improvement of model resolution, especially the horizontal resolution, the computation time of data assimilation analysis and the ensemble forecasts would be lengthened. Given relatively limited high-performance computational resources, it would bring great challenge for delivering the ensemble forecast products on time. ECMWF uses the data assimilation background field to calculate singular vector (FCSV), which could be implemented earlier than the computation of ANSV in the operational flow and then optimize the computation time for ensemble prediction system (EPS), and it shows that the performance of FCSV ensemble is comparable to ANSV ensemble.Based on CMA-GFS background field and SV calculation module, the feasibility of applying FCSV in CMA-GEPS is investigated. First, the spatial structures of ANSV and FCSV and their similarity index are analyzed. And then, two ensembles based on ANSV and FCSV are conducted for 10 cases in summer and autumn. The forecasts from ANSV ensemble and FCSV ensemble are comprehensively evaluated in terms of the ensemble prediction skill of barometric surface variables, the probability prediction of 24 hours accumulated precipitation in China, tropical cyclone track ensemble prediction skill, and the forecast skill of the minimum sea level pressure at tropical cyclone center. The results show that for the dominant extra-tropical singular vector in CMA-GEPS, the ANSV and FCSV have similar horizontal and vertical structures, their general similarity index is 0.6-0.8, and two ensembles have the comparable forecast skill over extratropics. For tropical singular vector which are only calculated when tropical cyclones are observed, their similarity index between ANSV and FCSV is relatively lower than that in extratropics, and FCSV ensemble shows slightly smaller ensemble spread but comparable error for tropical cyclone tracks. For the precipitation forecast, two ensembles have similar forecast skills for moderate to heavy rain. For mean sea level pressure forecast of strong tropical cyclone case, two ensemble have members showing the skill in terms of structures and magnitude. Therefore, it is feasible to apply FCSV in CMA-GEPS, and it could be an option to construct singular vector-based initial perturbations for future high-resolution operational CMA-GEPS.-
Key words:
- singular vectors;
- CMA-GFS;
- ensemble forecasts
-
图 1 初始时刻为2020年9月7日12:00 ANSV试验和FCSV试验北半球中高纬度目标区第1奇异向量、第2奇异向量和第5奇异向量(放大500倍)在第28层的位温扰动分量(填色,单位:K)和求解奇异向量使用的500 hPa位势高度初始场(等值线,单位:gpm)
Fig. 1 Potential temperature perturbation component(the shaded, unit:K) of the first singular vector, the second singular vector and the fifth singular vector(multiplied by 500) at 28 model level and the initial 500 hPa geopotential height(the contour, unit:gpm) in the Northern Hemisphere used to compute singular vectors corresponding to ANSV experiment and FCSV experiment with initial time of 1200 UTC 7 Sep 2020
图 2 初始时刻为2020年9月7日12:00 ANSV试验和FCSV试验北半球中高纬度目标区第1奇异向量、第2奇异向量和第5奇异向量(放大500倍)的位温扰动分量(单位:K)在50°N的垂直结构
Fig. 2 Vertical structures of the potential temperature perturbation component(unit:K) of the first singular vector, the second singular vector and the fifth singular vector(multiplied by 500) at 50°N in the Northern Hemisphere corresponding to ANSV experiment and FCSV experiment with initial time of 1200 UTC 7 Sep 2020
图 5 台风路径预报误差和路径集合离散度随预报时效演变
(a)所有台风个例的路径预报误差和集合离散度平均值,(b)台风预报路径误差箱线图,(c)台风路径集合离散度箱线图
Fig. 5 Evolutions of the typhoon track forecast error and ensemble spread
(a)averaged typhoon track forecast error and ensemble spread for all typhoon cases, (b)boxplot for the track forecast error, (c)boxplot for the track ensemble spread
图 7 2020年8月31日12:00分析场、控制预报、ANSV和FCSV集合平均预报的72 h平均海平面气压(单位:hPa)
(等值线间隔为4 hPa)
Fig. 7 Mean sea level pressure of the operational assimilation analysis field, mean sea level pressure of 72 h forecasts from the control forecast, the ensemble mean for ANSV and FCSV at 1200 UTC 31 Aug 2020(unit:hPa)
(the isoline interval is 4 hPa)
表 1 ANSV和FCSV相似指数在不同区间对应的奇异向量集合数量比例
Table 1 Fraction of singular vector ensemble number based on similarity index between ANSV and FCSV at different intervals
区域 奇异向量数量 奇异向量集合数量 相似指数在不同区间对应的奇异向量集合数量比例 [0.0, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0] 南北半球中高纬度目标区 30 38 0.000 0.000 0.526 0.474 0.000 0.000 5 38 0.000 0.105 0.395 0.263 0.237 0.000 热带气旋目标区 5 16 0.687 0.125 0.063 0.125 0.00 0.00 注:南北半球中高纬度目标区指30°~80°N和30°~80°S地区,奇异集合数量为个例数量的2倍;热带气旋目标区指以热带气旋中心位置为中心的10°×10°区域,奇异向量集合数量为个例数量。 -
[1] Leith C E. Theoretical skill of Monte Carlo forecasts. Mon Wea Rev, 1974, 102(6): 409-418. doi: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2 [2] Lorenz E N. A study of the predictability of a 28-variable atmospheric model. Tellus, 1965, 17(3): 321-333. [3] Mureau R, Molteni F, Palmer T N. Ensemble prediction using dynamically conditioned perturbations. Quart J Roy Meteor Soc, 1993, 119(510): 299-323. [4] Molteni F, Buizza R, Palmer T N, et al. The ECMWF ensemble prediction system: Methodology and validation. Quart J Roy Meteor Soc, 1996, 122(529): 73-119. doi: 10.1002/qj.49712252905 [5] Buizza R. Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon Wea Rev, 1997, 125(1): 99-119. [6] Leutbecher M, Palmer T N. Ensemble forecasting. J Comput Phys, 2008, 227(7): 3515-3539. doi: 10.1016/j.jcp.2007.02.014 [7] 陈德辉, 沈学顺. 新一代数值预报系统GRAPES研究进展. 应用气象学报, 2006, 17(6): 773-777. doi: 10.3969/j.issn.1001-7313.2006.06.014Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. doi: 10.3969/j.issn.1001-7313.2006.06.014 [8] 薛纪善, 陈德辉. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 2008.Xue J S, Chen D H. Scientific Design and Application of Numerical Prediction System GRAPES. Beijing: Science Press, 2008. [9] 苏勇, 沈学顺, 张倩. 质量守恒的订正算法在GRAPES_GFS中的应用. 应用气象学报, 2016, 27(6): 666-675. doi: 10.11898/1001-7313.20160603Su Y, Shen X S, Zhang Q. Application of the correction algorithm to mass conservation in GRAPES_GFS. J Appl Meteor Sci, 2016, 27(6): 666-675. doi: 10.11898/1001-7313.20160603 [10] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101 [11] 刘艳, 薛纪善. GRAPES的新初始化方案. 气象学报, 2019, 77(2): 165-179. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902001.htmLiu Y, Xue J S. The new initialization scheme of the GRAPES. Acta Meteor Sinica, 2019, 77(2): 165-179. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902001.htm [12] 张林, 刘永柱. GRAPES全球四维变分同化系统极小化算法预调节. 应用气象学报, 2017, 28(2): 168-176. doi: 10.11898/1001-7313.20170204Zhang L, Liu Y Z. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. doi: 10.11898/1001-7313.20170204 [13] 刘永柱, 张林, 金之雁. GRAPES全球切线性和伴随模式的调优. 应用气象学报, 2017, 28(1): 62-71. doi: 10.11898/1001-7313.20170106Liu Y Z, Zhang L, Jin Z Y. The optimization of GRAPES global tangent linear model and adjoint model. J Appl Meteor Sci, 2017, 28(1): 62-71. doi: 10.11898/1001-7313.20170106 [14] 刘永柱, 杨学胜, 王洪庆. GRAPES奇异向量研究及其在暴雨集合预报中的应用. 北京大学学报(自然科学版), 2011, 47(2): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201102014.htmLiu Y Z, Yang X S, Wang H Q. Research on GRAPES singular vectors and application to heavy rain ensemble prediction. Acta Sci Nat Univ Pekinensis, 2011, 47(2): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201102014.htm [15] 刘永柱, 沈学顺, 李晓莉. 基于总能量模的GRAPES全球模式奇异向量扰动研究. 气象学报, 2013, 71(3): 517-526.Liu Y Z, Shen X S, Li X L. Research on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteor Sinica, 2013, 71(3): 517-526. [16] 李晓莉, 陈静, 刘永柱, 等. GRAPES全球集合预报初始条件及模式物理过程不确定性方法研究. 大气科学学报, 2019, 42(3): 348-359. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201903003.htmLi X L, Chen J, Liu Y Z, et al. Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting. Trans Atmos Sci, 2019, 42(3): 348-359. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201903003.htm [17] 霍振华, 李晓莉, 陈静, 等. GRAPES全球模式静力平衡奇异向量改进及应用试验. 气象学报, 2021, 79(2): 282-299. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102008.htmHuo Z H, Li X L, Chen J, et al. The improved computation scheme for singular vectors based on hydrostatic equilibrium and application experiments using the GRAPES global model. Acta Meteor Sinica, 2021, 79(2): 282-299. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102008.htm [18] 李晓莉, 刘永柱. GRAPES全球奇异向量方法改进及试验分析. 气象学报, 2019, 77(3): 552-562. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903013.htmLi X L, Liu Y Z. The improvement of GRAPES global extratropical singular vectors and experimental study. Acta Meteor Sinica, 2019, 77(3): 552-562. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903013.htm [19] 霍振华, 刘永柱. 陈静, 等. 热带气旋奇异向量在GRAPES全球集合预报中的初步应用. 气象学报, 2020, 78(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001004.htmHuo Z H, Liu Y Z, Chen J, et al. The preliminary application of tropical cyclone targeted singular vectors in the GRAPES global ensemble forecasts. Acta Meteor Sinica, 2020, 78(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001004.htm [20] 袁月, 李晓莉, 陈静, 等. GRAPES区域集合预报系统模式不确定性的随机扰动技术研究. 气象, 2016, 42(10): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201610001.htmYuan Y, Li X L, Chen J, et al. Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor Mon, 2016, 42(10): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201610001.htm [21] 彭飞, 李晓莉, 陈静, 等. GRAPES全球集合预报系统模式扰动随机动能补偿方案初步探究. 气象学报, 2019, 77(2): 180-195.Peng F, Li X L, Chen J, et al. A stochastic kinetic energy backscatter scheme for model perturbations in the GRAPES global ensemble prediction system. Acta Meteor Sinica, 2019, 77(2): 180-195. [22] 雷勇, 郭启云, 钱媛, 等. L波段雷达探空高度评估及其质量标识. 应用气象学报, 2018, 29(6): 710-723. doi: 10.11898/1001-7313.20180607Lei Y, Guo Q Y, Qian Y, et al. Evaluation and quality mark of radiosonde geopotential height of L-band radar. J Appl Meteor Sci, 2018, 29(6): 710-723. doi: 10.11898/1001-7313.20180607 [23] 郝民, 龚建东, 田伟红, 等. L波段探空仪湿度资料偏差订正及同化试验. 应用气象学报, 2018, 29(5): 559-570. doi: 10.11898/1001-7313.20180505Hao M, Gong J D, Tian W H, et al. Deviation correction and assimilation experiment on L-band radiosonde humidity data. J Appl Meteor Sci, 2018, 29(5): 559-570. doi: 10.11898/1001-7313.20180505 [24] Leutbecher M. On Ensemble prediction using singular vectors started from forecasts. Mon Wea Rev, 2005, 133(10): 3038-3046. [25] Huang Y Y, Xue J S, Wan Q L, et al. Improvement of the surface pressure operator in GRAPES and its application in precipitation forecasting in South China. Adv Atmos Sci, 2013, 30(2): 354-366. [26] Huang B, Chen D H, Li X L, et al. Improvement of the semi-Lagrangian advection scheme in the GRAPES model: The oretical analysis and idealized tests. Adv Atmos Sci, 2014, 31(3): 693-704. [27] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2. 0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2. 0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307 [28] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2. 0模式系统误差评估. 应用气象学报, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2. 0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506 [29] Wang J, Wang B, Liu J J, et al. Application and characteristic analysis of the moist singular vector in GRAPES-GEPS. Adv Atmos Sci, 2020, 37(11): 1164-1178. [30] 王静, 刘娟娟, 王斌, 等. GRAPES-GEPS全球集合预报系统湿奇异向量的时空尺度敏感性研究. 大气科学, 2021, 45(4): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202104012.htmWang J, Liu J J, Wang B, et al. A sensitivity study of the moist singular vectors to temporal and spatial scales in GRAPES-GEPS global ensemble prediction system. Chinese J Atmos Sci, 2021, 45(4): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202104012.htm [31] Simon H D. The Lanczos algorithm with partial reorthogonalization. Math Comput, 1984, 42(165): 115-142. [32] Buizza R. Sensitivity of optimal unstable structures. Quart J Roy Meteor Soc, 1994, 120: 429-451.