Environmental Conditions and Cloud Macro and Micro Features of "21·7" Extreme Heavy Rainfall in Henan Province
-
摘要: 利用FY-4A静止气象卫星、FY-3D极轨气象卫星资料和ERA5再分析资料,深入分析“21·7”河南暴雨环境场及云宏微观特征,首次利用FY-4A观测研究此次事件对流云微物理特征。结果表明:“21·7”河南暴雨是一次极端强降水事件,河南省位于大陆高压和副热带高压之间的鞍型场内,有利于其上空低涡云系的发展和维持。2021年7月20日两股水汽输送交汇于河南中北部,为郑州极端降水提供了有利条件。20日14:00—16:00(北京时,下同)郑州长时间位于对流云团冷云区边界亮温梯度大值区,该时段对流发展旺盛;12:00—14:00云光学厚度跃增,且在15:00仍维持较大值,表明该时段云中液态粒子大量合并,液态水含量丰富,光学厚度峰值出现时间先于降水量峰值出现时间,FY-4A云光学厚度跃增且维持较大值对强降水出现时间及量级有重要的预警意义。对流云粒子有效半径(re)随温度(T)的增长曲线(T-re关系)表明:20日16:00河南上空的雨胚形成区最为深厚,云中不同高度的re整体维持在20~25 μm,表明云中上升气流较强,有利于地面强降水发生。Abstract: Meteorological satellites can provide more details of cloud, which can be used to analyze the development process of convective cloud in the rainstorm events. To investigate the "21·7" extreme heavy rainfall in Henan Province, satellite cloud image characteristics, the development and evolution process of precipitation clouds, macro structure and microphysical features are deeply analyzed by FY-4A satellite data, FY-3D satellite data, and ERA5 reanalysis data. Particularly, FY-4A satellite data are used to study the cloud microphysical features of this event for the first time. The boundary position and intensity of the water vapor dark area of continental high are relatively stable from 18 July to 22 July in 2021, and the subtropical high continues to extend westward. The stable saddle field is conductive to the long-term development and maintenance of the low vortex cloud system over Henan Province. Two streams of water vapor locate at the north central part of Henan Province, which is favorable for the occurrence of rainstorm at Zhengzhou on 20 July. The reorganization and adjustment of the convective system are due to the consolidation and development of several convective clouds over Henan Province on 20 July. From 1400 BT to 1600 BT, the boundary of cold cloud is over Zhengzhou, where the brightness temperature gradient value is large, indicating that the convection is in its development stage. Furthermore, the cloud optical thickness increases from 1200 BT to 1400 BT, and still maintains a large value at 1500 BT. It indicates that this period is critical for a large number of liquid particles to merge. The time when the cloud optical thickness reaches peak value is prior to that of the precipitation. The increasing trend and value of cloud optical thickness have great significance for the magnitude and occurrence time of heavy rainfall. The relations between cloud top temperature and particle effective radius(T-re relations) are analyzed by FY-4A data. The results show that the rain zone over Henan Province is the deepest at 1600 BT 20 July, and the effective radius of cloud particles at different heights maintain at 20-25 μm. It indicates that the updraft in the cloud is strong, which is conductive to the occurrence of heavy rainfall.
-
图 5 2021年7月20日08:00—21日08:00 FY-4A云宏观特征和郑州站逐小时降水量
(a)云顶高度和降水量,(b)长波红外通道亮温和降水量
Fig. 5 FY-4A cloud macro characteristics and hourly precipitation of Zhengzhou from 0800 BT 20 Jul to 0800 BT 21 Jul in 2021
(a)cloud top height and precipitation, (b)brightness temperature of long wave infrared channel and precipitation
图 6 2021年7月20日08:00—21日08:00 FY-4A云微物理特征和郑州站逐小时降水量特征
(a)云粒子有效半径和降水量,(b)云光学厚度和降水量
Fig. 6 FY-4A cloud microphysical characteristics and hourly precipitation of Zhengzhou Station from 0800 BT 20 Jul to 0800 BT 21 Jul in 2021
(a)cloud droplet effective radius and precipitation, (b)cloud optical thickness and precipitation
图 7 2018—2021年夏季河南省FY-4A云光学厚度与其后1 h累积降水量箱线图
(方框的上边界和下边界分别表示总样本75%和25%比例的数值,方框中实线代表总样本的中位数的数值,上下虚线端点分别表示占总样本90%和10%比例的数值)
Fig. 7 Box-plot of FY-4A cloud optical thickness for 1 h rainfall(unit:mm) in Henan in summer of 2018-2021
(the upper and lower boundaries of the box denote 75 and 25 percentiles;the median is denoted by the horizontal line inside the box;90 and 10 percentiles of values are denoted by the top and bottom ends of the whiskers, respectively)
图 9 图 8中所选区域对流云团对应的T-re图
(灰色曲线为样本量,对应上横坐标值;不同颜色的曲线表示不同比例有效样本量下re随T变化) (a)区域1, 10:00,(b)区域2, 12:00,(c)区域3, 14:00,(d)区域4,16:00
Fig. 9 Temperature and cloud droplet effective radius for the convective cloud clusters in the selected zone marked in Fig.8
(the grey line denotes the number of samples, corresponding to the upper x-axis;curves with different colors denote variations of re with T under different proportion of samples) (a)zone 1, 1000 BT, (b)zone 2, 1200 BT, (c)zone 3, 1400 BT, (d)zone 4, 1600 BT
-
[1] 齐道日娜, 何立富, 王秀明, 等."7·20"河南极端暴雨精细观测及热动力成因.应用气象学报, 2022, 33(1):1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [2] 张霞, 杨慧, 王新敏, 等. "21·7"河南极端强降水特征及环流异常性分析. 大气科学学报, 2021, 44(5): 672-687. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202105006.htmZhang X, Yang H, Wang X M, et al. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Trans Atmos Sci, 2021, 44(5): 672-687. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202105006.htm [3] 段汀, 陈权亮, 廖雨静. "21.7"郑州极端暴雨的形成过程及致灾机理分析. 气象科学, 2022, 42(2): 152-161. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202202002.htmDuan T, Chen Q L, Liao Y J. Analysis of "21.7" extreme rainstorm formation process and disaster mechanism in Zhengzhou. J Meteor Sci, 2022, 42(2): 152-161. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202202002.htm [4] 梁旭东, 夏茹娣, 宝兴华, 等. 2021年7月河南极端暴雨过程概况及多尺度特征初探. 科学通报, 2022, 67(10): 997-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202210008.htmLiang X D, Xia R D, Bao X H, et al. Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes. Chinese Sci Bull, 2022, 67(10): 997-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202210008.htm [5] Nie Y, Sun J. Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys Res Lett, 2022, 49, e2021GL097446. [6] Zhang S, Chen Y, Luo Y, et al. Revealing the circulation pattern most conducive to precipitation extremes in Henan Province of North China. Geophys Res Lett, 2022, 49, e2022GL098034. [7] 饶晨泓, 毕鑫鑫, 陈光华, 等. 近海台风对"21·7"河南极端暴雨过程水汽通量和动、热力条件影响的模拟研究. 大气科学, 2022, 46(6): 1-18.Rao C H, Bi X X, Chen G H, et al. A Numerical study on the impacts of the offshore typhoons on dynamic and thermal conditions and water vapor flux of the "21·7" extreme rainstorm event in Henan Province. Chinese J Atmos Sci, 2022, 46(6): 1-18. [8] 布和朝鲁, 诸葛安然, 谢作威, 等. 2021年"7·20"河南暴雨水汽输送特征及其关键天气尺度系统. 大气科学, 2022, 46(3): 725-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202203013.htmBueh C, Zhuge A R, Xie Z W, et al. Water vapor transportation features and key synoptic-scale systems of the "7·20" rainstorm in Henan Province in 2021. Chinese J Atmos Sci, 2022, 46(3): 725-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202203013.htm [9] 汪小康, 崔春光, 王婧羽, 等. "21·7"河南特大暴雨水汽和急流特征诊断分析. 气象, 2022, 48(5): 533-544. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205001.htmWang X K, Cui C G, Wang J Y, et al. Diagnostic analysis on water vapor and jet characteristics of the July 2021 severe torrential rain in Henan Province. Meteor Mon, 2022, 48(5): 533-544. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205001.htm [10] 苏爱芳, 席乐, 吕晓娜, 等. 豫北"21·7"极端暴雨过程特征及成因分析. 气象, 2022, 48(5): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205003.htmSu A F, Xi L, Lyu X N, et al. Analysis on characteristics and causes of the July 2021 extreme rainstorm in northern Henan. Meteor Mon, 2022, 48(5): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202205003.htm [11] 栗晗, 王新敏, 朱枫. "21·7"河南极端暴雨多模式预报性能综合评估. 大气科学学报, 2022, 45(4): 573-590. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202204010.htmLi H, Wang X M, Zhu F. Comprehensive evaluations of multi-model eorecast performance of "21·7" Henan extreme rainstorm. Trans Atmos Sci, 2022, 45(4): 573-590. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202204010.htm [12] 方宗义, 覃丹宇. 暴雨云团的卫星监测和研究进展. 应用气象学报, 2006, 17(5): 583-593. doi: 10.3969/j.issn.1001-7313.2006.05.008Fang Z Y, Qin D Y. A review of satellite observed heavy rainfall cloud clusters. J Appl Meteor Sci, 2006, 17(5): 583-593. doi: 10.3969/j.issn.1001-7313.2006.05.008 [13] 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308 [14] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [15] 刘健, 张文建, 朱元竞, 等. 中尺度强暴雨云团云特征的多种卫星资料综合分析. 应用气象学报, 2007, 18(2): 158-164. http://qikan.camscma.cn/article/id/20070228Liu J, Zhang W J, Zhu Y J, et al. Case study on cloud properties of heavy rainfall based upon satellite data. J Appl Meteor Sci, 2007, 18(2): 158-164. http://qikan.camscma.cn/article/id/20070228 [16] 郑倩, 毛程燕, 丁丽华, 等. 台风利奇马(1909)与台风摩羯(1814)云特征对比. 应用气象学报, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104 [17] 周毓荃, 蔡淼, 欧建军, 等. 云特征参数与降水相关性的研究. 大气科学学报, 2011, 34(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201106004.htmZhou Y Q, Cai M, Ou J J, et al. Correlation between cloud characteristic parameters and precipitation. Trans Atmos Sci, 2011, 34(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201106004.htm [18] 傅云飞. 利用卫星双光谱反射率算法反演的云参数及其应用. 气象学报, 2014, 72(5): 1039-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405018.htmFu Y F. Cloud parameters retrieved by the bispectral reflectance algorithm and associated applications. Acta Meteor Sinica, 2014, 72(5): 1039-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405018.htm [19] 陈英英, 唐仁茂, 周毓荃, 等. FY-2C/D卫星微物理特性参数产品在地面降水分析中的应用. 气象, 2009, 35(2): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200902004.htmChen Y Y, Tang R M, Zhou Y Q, et al. Microphysical characteristic parameters product retrieved by FY-2C/D satellite and its application in the precipitation analysis. Meteor Mon, 2009, 35(2): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200902004.htm [20] 李特, 郑有飞, 王立稳, 等. 基于MODIS产品的中国陆地冰云季节变化特征. 应用气象学报, 2017, 28(6): 724-736. doi: 10.11898/1001-7313.20170608Li T, Zheng Y F, Wang L W, et al. Ice cloud distribution and seasonal migration over land area of China based on MODIS data. J Appl Meteor Sci, 2017, 28(6): 724-736. doi: 10.11898/1001-7313.20170608 [21] 桂海林, 诸葛小勇, 韦晓澄, 等. 基于Himawari-8卫星的云参数和降水关系研究. 气象, 2019, 45(11): 1579-1588.Gui H L, Zhuge X Y, Wei X C, et al. Study on the relationship between Himawari-8-based cloud parameters and precipitation. Meteor Mon, 2019, 45(11): 1579-1588. [22] 王磊, 周毓荃, 蔡淼, 等. 华北云特征参数与降水相关性的研究. 气象与环境科学, 2019, 42(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201903002.htmWang L, Zhou Y Q, Cai M, et al. Study on correlation between cloud characteristic parameters and precipitation in North China. Meteor Environ Sci, 2019, 42(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201903002.htm [23] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc, 2017, 98(8): 1637-1658. [24] 王明, 陈英英, 周毓荃, 等. 基于一次暴雨过程的风云四号A星三种云参数应用效果对比分析. 暴雨灾害, 2022, 41(4): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202204004.htmWang M, Chen Y Y, Zhou Y Q, et al. Comparative analysis of application effects of three cloud parameters of FY-4A in a rainstorm case. Torrential Rain and Disasters, 2022, 41(4): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202204004.htm [25] Wang T, Luo J L, Liang J L, et al. Comparisons of AGRI/FY-4A cloud fraction and cloud top pressure with MODIS/Terra measurements over East Asia. J Meteor Res, 2019, 33(4): 705-719. [26] Chen Y, Li W, Chen S, et al. Linkage between the vertical evolution of clouds and droplet growth modes as seen from FY-4A AGRI and GPM DPR. Geophys Res Lett, 2020, 47, e2020GL088312. [27] Chen Y, Chen G, Cui C, et al. Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites. Atmos Chem Phys, 2020, 20(2): 1131-1145. [28] Xu W, Lyu D. Evaluation of cloud mask and cloud top height from Fengyun-4A with MODIS cloud retrievals over the Tibetan Plateau. Remote Sens, 2021, 13: 1418. [29] Tan Z, Ma S, Zhao X, et al. Evaluation of cloud top height retrievals from China's next-generation geostationary meteorological satellite FY-4A. J Meteor Res, 2019, 33: 553-562. [30] Liu B, Huo J, Lyu D. et al. Assessment of FY-4A and Himawari-8 cloud top height retrieval through comparison with ground-based millimeter radar at sites in Tibet and Beijing. Adv Atmos Sci, 2021, 38: 1334-1350. [31] Lai R, Teng S, Yi B, et al. Comparison of cloud properties from Himawari-8 and Fengyun-4A geostationary satellite radiometers with MODIS cloud retrievals. Remote Sens, 2019, 11: 1703. [32] 崔林丽, 郭巍, 葛伟强, 等. FY-4A卫星云顶参数精度检验及台风应用研究. 高原气象, 2020, 39(1): 196-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202001019.htmCui L L, Guo W, Ge W Q, et al. Comparisons of cloud top parameter of FY-4A satellite and its typhoon application research. Plateau Meteor, 2020, 39(1): 196-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202001019.htm [33] Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Amer Meteor Soc, 1998, 79: 2457-2476. [34] Lensky I M, Rosenfeld D. The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos Chem Phys, 2006, 6: 2887-2894. [35] Rosenfeld D, Wolff D B, Amitai E. The window probability matching method for rainfall measurements with radar. J Appl Meteor Clim, 1994, 33(6): 682-693. [36] Lensky I M, Rosenfeld D. Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data. J Appl Meteor Clim, 1997, 36(3): 234-242. [37] Woodley W L, Rosenfeld D, Strautins A. Identification of a seeding signature in Texas using multi-spectral satellite imagery. J Wea Mod, 2000, 32: 37-52. [38] Rosenfeld D, Woodley W L, Lerner A, et al. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J Geophys Res, 2008, 113: D04208. [39] 戴进, 余兴, 刘贵华, 等. 一次暴雨过程中云微物理特征的卫星反演分析. 气象学报, 2010, 68(3): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201003012.htmDai J, Yu X, Liu G H, et al. Analyses of satellite retrieval microphysical properties of a rainstorm in the northern part of Shaanxi. Acta Meteor Sinica, 2010, 68(3): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201003012.htm [40] 周毓荃, 蒋元华, 蔡淼. 北京"7·21"特大暴雨云降水结构及云雨转化特征. 大气科学学报, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htmZhou Y Q, Jiang Y H, Cai M. Characteristics and transformation of cloud and precipitation of the extreme torrential rain in Beijing on 21 July 2012. Trans Atmos Sci, 2015, 38(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503004.htm [41] 蔡淼, 周毓荃, 朱彬. 一次对流云团合并的卫星等综合观测分析. 大气科学学报, 2011, 34(2): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201102008.htmCai M, Zhou Y Q, Zhu B. Comprehensive analysis of satellite and other observations from a convective clouds merging event. Trans Atmos Sci, 2011, 34(2): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201102008.htm [42] Hu J, Rosenfeld D, Ryzhkov A, et al. Synergetic use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes. J Appl Meteorol Clim, 2020, 59(6): 1051-1068. [43] Lin D, Wang W, Liu P, et al. FY-4A Satellite Based Cloud Microphysical Variation Analysis of Airborne Cloud Seeding Operations in Sichuan Basin. Int Arch Photogramm Remote Sens Spatial Inf Sci, XLⅡ-3/W9, 2019: 125-131. [44] Shpund J, Khain A, Rosenfeld D, et al. Effects of sea spray on microphysics and intensity of deep convective clouds under strong winds. J Geophys Res Atmos, 2019, 124: 9484-9509. [45] 王瑾, 蒋建莹, 江吉喜. "7·18"济南突发性大暴雨特征. 应用气象学报, 2009, 20(3): 295-302. http://qikan.camscma.cn/article/id/20090305Wang J, Jiang J Y, Jiang J X. A Jinan heavy rainfall on 18 July 2007. J Appl Meteor Sci, 2009, 20(3): 295-302. http://qikan.camscma.cn/article/id/20090305 [46] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401