Simulation of Mesoscale Convection Process into Sea Based on Downscaling Method
-
摘要: 利用海-气-浪耦合模式和动力降尺度方法模拟并分析了2018年5月12日和7月13日两次东移进入渤海湾的中尺度对流过程,分别为入海减弱型和入海增强型。两次过程均发生在低空西南气流强盛,且地面处于暖舌控制的环境下,具有较好的水汽和能量条件。结果表明:海-气-浪耦合模式能较好地模拟减弱型过程的变化趋势,而对增强型过程的模拟效果较差,且模拟的两次过程对流强度整体偏弱;但经动力降尺度模拟后,两次过程的模拟效果均明显提升。敏感性试验对比表明:采用海-气-浪耦合模式结果为动力降尺度提供初边界条件具有一定优势,适用于入海中尺度对流过程模拟;两次过程对流系统入海前对流有效位能条件均较好,但垂直风切变条件增强型过程优于减弱型过程;对流系统入海后的冷池效应在减弱型过程中明显,而在增强型过程中强度较弱但范围较大;海洋下垫面为对流发展提供的热量和水汽输送在减弱型过程中较少,在增强型过程中明显。Abstract: Two processes of mesoscale convection moving eastward into the Bohai Bay on 12 May and 13 Jul in 2018, which are weakened process and enhanced process respectively, are simulated and analyzed by using the ocean-atmosphere-wave coupling model and dynamic downscaling method. Both processes occur under the control of strong southwesterly at low level and warm tongue near surface, which bring abundant water vapor and heat. The results show that the coupling model can simulate the right trend of the weakened process, but the wrong trend of the enhanced process, and the simulated intensity is overall weak. The simulation effects are improved obviously after the spatial resolution of the model increasing by using dynamic downscaling method twice. Through the comparison of sensitivity experiments, it is indicated that the coupling model has certain advantages in providing better initial and boundary conditions for the dynamic downscaling, which is suitable for the simulation, compared with the general atmospheric WRF model. Through the diagnosis and analysis of the simulation results, it's concluded that before the convection systems entering the sea, the convective available potential energy (CAPE) is large in the Bohai Bay and coastal areas. As the convection systems moving eastward into the sea, the CAPE is gradually consumed, but the supplement of CAPE in the enhanced process is stronger than that in the weakened process. The 0-6 km vertical wind shear condition of the enhanced process is also stronger than that of the weakened process in the Bohai Bay before the convection systems entering the sea, which is another favorable factor for the development of the convection. In the weakened process, the cold pool effect is increasingly stronger with an obvious rear inflow, and there is an obvious wind velocity convergence in the front of the cold pool during the convection systems moving. In the enhanced process, however, the strength of the cold pool is weaker, but the range is larger compared with the weakened process, and there is an obvious wind direction convergence in the front of the cold pool. In the weakened process, the underlying surface of the ocean provide less water vapor and heat energy for the convection region, making the convection difficult to maintain or further develop, while in the enhanced process the sea surface provides mass water vapor and heat energy transfer to the convective region when the convection system moving over the sea.
-
图 3 2018年5月12日和7月13日500 hPa高度场(蓝色等值线, 单位: dagpm)、温度场(红色等值线, 单位: ℃)和风场(风羽), 925 hPa水汽通量(填色)、高度场(蓝色等值线, 单位: dagpm)、温度场(红色等值线, 单位: ℃)和风场(风羽),海平面气压(灰色实线, 单位: hPa)、2 m温度(填色)和10 m风场(风羽)
Fig. 3 500 hPa height(the blue isoline, unit: dagpm), temperature(the red isoline, unit: ℃) and wind(the barb); 925 hPa water vapor flux(the shaded), height(the blue isoline, unit: dagpm), temperature(the red isoline, unit: ℃) and wind(the barb); surface sea level pressure(the grey isoline, unit: hPa), 2 m temperature(the shaded) and 10 m wind(the barb) on 12 May and 13 Jul in 2018
图 7 2018年5月12日和7月13日浮力B(填色)及纬向风(单位: m·s-1)与垂直速度(单位: 10-1m·s-1)合成场(箭头) 垂直剖面(沿图4中黑色实线,图底部的蓝色实线代表海洋下垫面)
Fig. 7 Vertical cross-section of buoyancy B(the shaded) and the combination(the arrow) of zonal wind(unit: m·s-1) and vertical movement(unit: 10-1m·s-1) on 12 May and 13 Jul in 2018(the vertical cross-sections are made along the black line in Fig.4, blue solid lines in the bottom of the figures denote the sea surface)
图 8 2018年5月12日和7月13日区域平均的视热源Q1和视水汽汇Q2及其局地变化Q1_lc,Q2_lc, 水平平流Q1_adv,Q2_adv和垂直输送Q1_vt,Q2_vt作用的垂直廓线(选择区域见图 4中红色方框)
Fig. 8 Vertical profile of apparent heat source Q1, apparent moist sink Q2, as well as effects of local change Q1_lc and Q2_lc, horizontal advection Q1_adv and Q2_adv, vertical transfer Q1_vt and Q2_vt effects on 12 May and 13 Jul in 2018(the selected region is shown in red box in Fig. 4)
-
[1] 俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展. 气象学报, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htmYu X D, Zheng Y G. Advances in severe convection research and operation in China. Acta Meteor Sinica, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htm [2] 刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502 [3] 王一童, 王秀明, 俞小鼎. 产生致灾大风的超级单体回波特征. 应用气象学报, 2022, 33(2): 180-191. doi: 10.11898/1001-7313.20220205Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi: 10.11898/1001-7313.20220205 [4] 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征. 应用气象学报, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304 [5] 王金兰, 俞小鼎, 汤兴芝, 等. 黄淮地区触发对流天气的干线特征. 应用气象学报, 2021, 32(5): 592-602. doi: 10.11898/1001-7313.20210507Wang J L, Yu X D, Tang X Z, et al. Characteristics of convection-triggering drylines in the drainage area of Huanghe and Huaihe River. J Appl Meteor Sci, 2021, 32(5): 592-602. doi: 10.11898/1001-7313.20210507 [6] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine obervation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [7] 田晨, 周伟灿, 苗峻峰. 中国地区下垫面特征对强对流天气影响研究进展. 气象科技, 2012, 40(2): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201202014.htmTian C, Zhou W C, Miao J F. Review of impact of land surface characteristics on severe convective weather in China. Meteor Sci Technol, 2012, 40(2): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201202014.htm [8] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403 [9] 陈淑琴, 黄辉, 周丽琴, 等. 对流单体在杭州湾入海时的强度变化分析. 气象, 2011, 37(7): 889-896. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107015.htmChen S Q, Huang H, Zhou L Q, et al. Analysis on the intensity changes of convective cells on the Hangzhou Bay when entering the sea. Meteor Mon, 2011, 37(7): 889-896. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107015.htm [10] Zhang L N, Sun J Z, Ying Z M, et al. Initiation and development of a squall line crossing Hangzhou Bay. J Geophys Res Atmos, 2021, 126(1), e2020JD032504. [11] 李延江, 陈小雷, 景华. 渤海强对流天气监测及概念模型初建. 海洋预报, 2013, 30(4): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201304007.htmLi Y J, Chen X L, Jing H, et al. The monitoring for the severe convective weather and the preliminary building of its conceptual model in the Bohai Sea. Marin Forec, 2013, 30(4): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201304007.htm [12] 贺靓, 于超, 吕新民. 渤海中南部海区一次雷暴大风过程分析. 海洋预报, 2011, 28(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201101005.htmHe J, Yu C, Lu X M. Analysis of a thunderstorm gale process in the south-central Bohai Sea. Marin Forec, 2011, 28(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201101005.htm [13] 王彦, 于莉莉, 李艳伟, 等. 边界层辐合线对强对流系统形成和发展的作用. 应用气象学报, 2011, 22(6): 724-731. http://qikan.camscma.cn/article/id/20110610Wang Y, Yu L L, Li Y W, et al. The role of boundary layer convergence line in initiation of severe weather events. J Appl Meteor Sci, 2011, 22(6): 724-731. http://qikan.camscma.cn/article/id/20110610 [14] 王亚男, 李英华, 孙米娜. 下垫面对渤海西部雷雨大风影响的数值模拟分析. 海洋预报, 2019, 36(3): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201903004.htmWang Y N, Li Y H, Sun M N. Numerical simulation study of the effect of underlying sea surface on thunderstorm wind in the western Bohai Sea. Marin Forec, 2019, 36(3): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201903004.htm [15] 易笑园, 李泽椿, 孙晓磊. 渤海西岸暴雨中尺度对流系统的结构及成因. 应用气象学报, 2011, 22(1): 23-31. http://qikan.camscma.cn/article/id/20110103Yi X Y, Li Z C, Sun X L, et al. The structure and origin of a rainstorm-inducing mesoscale convective system on western coast of Bohai Bay. J Appl Meteor Sci, 2011, 22(1): 23-31. http://qikan.camscma.cn/article/id/20110103 [16] 鲁蓉, 孙建华, 傅慎明. 近海水汽初值和对流影响一次华南前汛期沿海强降水对流系统发展过程的机理研究. 大气科学, 2018, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801001.htmLu R, Sun J H, Fu S M. Influence of offshore initial moisture field and convection on the development of coastal convection in a heavy rainfall event over South China during the pre-summer rainy season. Chinese J Atmos Sci, 2018, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801001.htm [17] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [18] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408 [19] 董佳阳, 崔晔, 阮征, 等. 对流降水云中大气垂直运动反演及个例试验. 应用气象学报, 2022, 33(2): 167-179. doi: 10.11898/1001-7313.20220204Dong J Y, Cui Y, Ruan Z, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. doi: 10.11898/1001-7313.20220204 [20] Young G, Leddvina L, Fairall C. Influence of precipitating convection on the surface energy budget observed during a tropical ocean global atmosphere pilot cruise in the tropical western Pacific Ocean. I. Layer accompanying a tropical squall line. Mon Wea Rev, 1992, 111: 308-319. [21] 陶局, 易笑园, 赵海坤, 等. 一次飑线过程及其受下垫面影响的数值模拟. 高原气象, 2019, 38(4): 756-772. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904009.htmTao J, Yi X Y, Zhao H K, et al. Numerical simulation on the influence of Bohai Sea to a squall line process. Plateau Meteor, 2019, 38(4): 756-772. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904009.htm [22] Murray J C, Colle B A. The satial and temporal variability of convective storms over the northeast United States during the warm season. Mon Wea Rev, 2011, 139(3): 992-1012. [23] Wu R, Kirtman P. Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability. Climate Dyn, 2005, 25: 155-170. [24] Wang Y, Leung L R, McGregor J L, et al. Regional climate modeling: Progress, challenges and prospects. J Meteor Soc Japan, 2004, 82: 1599-1628. [25] Giorgi F, Mearns L O. Approaches to the simulation of regional climate change: A review. Reviews of Geophysics, 1991, 29(2): 191-216. [26] 高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟. 中国科学(地球科学), 2010, 40(7): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007012.htmGao X J, Shi Y, Giorgi F. A high resolution simulation of climate change over China. Sci China(Earth Sci), 2010, 40(7): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007012.htm [27] 姚隽琛, 周天军, 邹立维. 基于气候系统模式FGOALS-g2的热带气旋活动及其影响的动力降尺度模拟. 大气科学, 2018, 42(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801011.htmYao J C, Zhou T J, Zou L W. Dynamical downscaling of tropical cyclone and associated rainfall simulations of FGOALS-g2. Chinese J Atmos Sci, 2018, 42(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801011.htm [28] 张凯锋, 王东海, 张宇. 动力降尺度和多物理参数化方案组合对华南前汛期降水集合预报的影响研究. 热带气象学报, 2020, 36(5): 668-682. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202005009.htmZhang K F, Wang D H, Zhang Y. Study on impacts of dynamic downscaling and multi-physical parameterization scheme combination on ensemble forecast of annually first rainy season in south China. J Trop Meteor, 2020, 36(5): 668-682. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202005009.htm [29] Li M, Zhang S, Wu L. A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation. Sci Bull, 2020, 65: 1849-1858. [30] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305 [31] Correia J, Arritt R W, Anderson C J. Idealized mesoscale convective system structure and propagation using convective parameterization. Mon Wea Rev, 2008, 136(7): 2422-2442. [32] Yanai M, Esbensen S, Chu J. Determination of bulk properties of tropocal cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 1973, 30(4): 611-627. [33] 胡祖恒, 李国平, 官昌贵, 等. 中尺度对流系统影响西南低涡持续性暴雨的诊断分析. 高原气象, 2014, 33(1): 116-129. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401012.htmHu Z H, Li G P, Guan C G, et al. Diagnostic analysis of mesoscale convective systems influence on sustained rainstorm caused by southwest vortex. Plateau Meteor, 2014, 33(1): 116-129. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401012.htm