Greenhouse Gas Emission Characteristics of Different Rice Cropping Patterns in Jianghan Plain
-
摘要: 采用静态箱-气相色谱法在江汉平原开展早稻、晚稻、中稻、虾稻和再生稻5种稻作类型温室气体排放监测试验,研究不同稻作模式下稻田CH4和N2O排放特征、总增温潜势及温室气体排放强度,为准确评估稻田生态系统温室气体排放提供参考依据。结果表明:CH4排放集中在水稻前期淹水阶段,排放峰值最高为虾稻(85.7 mg·m-2·h-1),较其他稻作模式高71.7%~191.5%。N2O排放峰值主要出现于中期晒田和施肥阶段,排放峰值最高为再生稻(1100.7 μg·m-2·h-1),较其他稻作模式高16.8%~654.9%。CH4累积排放量从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;N2O累积排放量从大到小依次为再生稻、早稻、晚稻、中稻、虾稻;总增温潜势从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;温室气体排放强度从大到小依次为虾稻、早稻、再生稻、晚稻、中稻。CH4排放占比为82.9%~99.0%,稻虾田高排放主要原因为持续淹水时间长、秸秆还田和饲料投入,探究该模式CH4减排举措最为关键;中稻由于水旱轮作,稻田温室气体排放最低,可作为低碳减排的主要稻作类型。Abstract: A field experiment is conducted in Jianghan Plain using static chamber-gas chromatography method to monitor greenhouse gas emissions from 5 different rice cropping systems:Early rice, late rice, middle rice, rice-crayfish coculture and ratooning rice systems. The emission characteristics of methane and nitrous oxide fluxes, global warming potential and greenhouse gas emission intensity in different rice patterns are analyzed, aiming to provide scientific references for accurate estimates of greenhouse gas emissions from rice paddy. The results show that methane emissions are concentrated in the early flooding stage of rice paddy, with a flux peak of (85.7 mg·m-2·h-1) for rice-crayfish system, which is higher than those of other patterns by 71.7%-191.5%. Nitrous oxide emissions are mainly observed during mid-season drainage or after nitrogen fertilization, and the highest flux peak is found for ratooning rice (1100.7 μg·m-2·h-1), which is 16.8%-654.9% higher than other patterns. The sequence of accumulated methane emission from largest to smallest is rice-crayfish (541.1 kg·hm-2), ratooning rice (293.7 kg·hm-2), early rice (177.2 kg·hm-2), late rice (133.7 kg·hm-2), and middle rice (115.3 kg·hm-2). For nitrous oxide emission, the sequence is ratooning rice (5.1 kg·hm-2), early rice (2.1 kg·hm-2), late rice (1.0 kg·hm-2), middle rice (0.6 kg·hm-2), and rice-crayfish (0.4 kg·hm-2). As for total emission calculated by global warming potential, the value of rice-crayfish is 13657.7 kg·hm-2, followed by ratooning rice (8857.0 kg·hm-2), early rice (5067.3 kg·hm-2), late rice (3647.0 kg·hm-2), and middle rice (3053.8 kg·hm-2). Rice-crayfish is also accompanied by high greenhouse gas emission intensity reaching up to 1.4 kg·kg-1, followed by early rice (0.79 kg·kg-1), ratooning rice (0.57 kg·kg-1), late rice (0.53 kg·kg-1), and middle rice (0.34 kg·kg-1). The total emission and intensity of middle rice is significantly smaller than those of rice-crayfish system by 77.6% and 75.7%. It is notable that methane emission accounts for 82.9%-99.0% of total emission among different rice cropping patterns, indicating that controlling methane is key for low-carbon production. Due to water flooding in rice paddy, nitrous oxide emission is small. The high emissions from rice-crayfish paddy are mainly attributed to the long duration of flooding, straw returning and large amount of fodder input, which has led to a long period of soil anaerobic condition, and plenty of carbon substrate for methane production. Thus, it is important to explore methane reduction practices and strategies in rice-crayfish paddy. The emission intensity of middle rice is the lowest due to paddy-upland rotation and can be considered as a low-carbon rice cultivation pattern.
-
表 1 2021年不同稻作模式水稻移栽、晒田和收获时间
Table 1 Date of rice transplanting, mid-season drainage and harvesting under different rice cropping patterns in 2021
模式 品种 移栽 晒田 收获 早稻 两优152 05-02 05-30—06-06 07-21 晚稻 隆优4945 07-26 08-25—31 10-17 中稻 黄华占 06-10 07-27—08-01 10-05 虾稻 黄华占 06-14 10-08 再生稻 天两优616 04-23 05-30—06-08 头季08-17,再生季10-25 表 2 不同稻作模式下综合温室效应、增温潜势和温室气体排放强度
Table 2 Global warming potential and greenhouse gas emission intensity under different rice cropping patterns
稻作类型 CH4排放占比/% N2O排放占比/% 增温潜势/(kg·hm-2) 水稻产量/(kg·hm-2) 温室气体排放强度/(kg·kg-1) 早稻 87.4 12.6 5067.3 6441.4 0.79 晚稻 91.9 8.1 3647.0 6925.3 0.53 中稻 94.2 5.8 3053.8 9052.7 0.34 虾稻 99.0 1.0 13657.7 9745.1 1.40 再生稻 82.9 17.1 8857.0 15609.2 0.57 -
[1] 王玉洁, 周波涛, 任玉玉, 等.全球气候变化对我国气候安全影响的思考.应用气象学报, 2016, 27(6):750-758. doi: 10.11898/1001-7313.20160612Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi: 10.11898/1001-7313.20160612 [2] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101 [3] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101Guo J P. Advances in impacts of climate change on agricultural production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101 [4] Martins C S C, Macdonald C A, Anderson I C, et al. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Biol Biochem, 2016, 100: 21-32. doi: 10.1016/j.soilbio.2016.05.007 [5] Zhang D, Wang H, Pan J, et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agr Ecosyst environ, 2018, 265: 8-14. doi: 10.1016/j.agee.2018.05.023 [6] 周凌晞, 刘立新, 张晓春, 等. 我国温室气体本底浓度网络化观测的初步结果. 应用气象学报, 2008, 19(6): 641-645. doi: 10.3969/j.issn.1001-7313.2008.06.001Zhou L X, Liu L X, Zhang X C, et al. Preliminary results on network observation of greenhouse gases at China GAW stations. J Appl Meteor Sci, 2008, 19(6): 641-645. doi: 10.3969/j.issn.1001-7313.2008.06.001 [7] 彭艳玉, 刘煜, 缪育聪. 温室气体对亚洲夏季风影响的数值研究, 应用气象学报, 2021, 32(2): 245-256. doi: 10.11898/1001-7313.20210209Peng Y Y, Liu Y, Miao Y C. A numberical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. doi: 10.11898/1001-7313.20210209 [8] 程红兵, 王木林, 温玉璞, 等. 我国瓦里关山、兴隆温室气体CO2、CH4和N2O的背景浓度. 应用气象学报, 2003, 14(4): 402-409. doi: 10.3969/j.issn.1001-7313.2003.04.003Cheng H B, Wang M L, Wen Y P, et al. Background concentration of atmospheric CO2, CH4 and N2O at Waliguan and Xinglong in China. J Appl Meteor Sci, 2003, 14(4): 402-409. doi: 10.3969/j.issn.1001-7313.2003.04.003 [9] 周广胜, 何奇瑾, 汲玉河. 适应气候变化的国际行动和农业措施研究进展. 应用气象学报, 2016, 27(5): 527-533. doi: 10.11898/1001-7313.20160502Zhou G S, He Q J, Ji Y H. Advances in the international action and agricultural measurements of adaptation to climate change. J Appl Meteor Sci, 2016, 27(5): 527-533. doi: 10.11898/1001-7313.20160502 [10] 马永跃, 仝川, 王维奇. 福州平原两种水稻品种稻田的CH4和N2O排放通量动态. 湿地科学, 2013, 11(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201302017.htmMa Y Y, Tong C, Wang W Q. Variations of methane and nitrous oxide fluxes in the fields of two rice varieties in the Fuzhou Plain. Wetland Science, 2013, 11(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201302017.htm [11] 周胜, 张鲜鲜, 王从, 等. 水分和秸秆管理减排稻田温室气体研究与展望. 农业环境科学学报, 2020, 39(4): 852-862. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004023.htmZhou S, Zhang X X, Wang C, et al. Research progress and prospects of water and crop residue managements to mitigate greenhouse gases emissions from paddy field. Journal of Agro-Environment Science, 2020, 39(4): 852-862. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004023.htm [12] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020, 39(4): 842-851. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004022.htmLi Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. Journal of Agro-Environment Science, 2020, 39(4): 842-851. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004022.htm [13] 曹开勋, 赵坤, 金王飞, 等. 水氮互作对稻田温室气体排放的影响. 土壤学报, 2022, 59(5): 1386-1396.Cao K X, Zhao K, Jin W F, et al. Effects of water-nitrogen interaction on greenhouse gas emissions in a paddy soil. Acta Pedologica Sinica, 2022, 59(5): 1386-1396. [14] 许国春. 不同轮作系统和稻作模式对稻田温室气体排放及氮素平衡的影响. 南京: 南京农业大学, 2017.Xu G C. Effects of Eifferent Rotation Systems and Cultivation Modes on Greenhouse Gas Emissions and Nitrogen Balance in Rice Field. Naijing: Nanjing Agricultural University, 2017. [15] 唐刚, 廖萍, 眭锋, 等. 秸秆全量还田下晚稻季翻耕对双季稻田温室气体排放和产量的影响. 作物杂志, 2021(6): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202106016.htmTang G, Liao P, Sui F, et al. Effects of moldboard plow tillage under all straw return in the late-rice season on greenhouse gas emissions and yield in a double rice-cropping system. Crops, 2021(6): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202106016.htm [16] 彭华, 纪雄辉, 吴家梅, 等. 双季稻田不同种植模式对CH4和N2O排放的影响研究. 生态环境学报, 2015, 24(2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201502002.htmPeng H, Ji X H, Wu J M, et al. CH4 and N2O emission reduction under different cropping systems in double-cropping paddy fields. Ecology and Environmental Sciences, 2015, 24(2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201502002.htm [17] Weller S, Janz B, Jorg L, et al. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biol, 2016, 22(1): 432-448. [18] Zhou M H, Zhu B, Bruggemann N, et al. Nitrous oxide and methane emissions from a subtropical rice-rapeseed rotation system in China: A 3-year field case study. Agr Ecosyst Environ, 2015, 212: 297-309. [19] 陈友德, 赵杨, 高杜娟, 等. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响. 环境科学, 2020, 41(10): 4701-4710. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202010042.htmChen Y D, Zhao Y, Gao D J, et al. Effects of different rotation patterns of oil-rice on methane and nitrous oxide emissions in rice fields. Environmental Science, 2020, 41(10): 4701-4710. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202010042.htm [20] 李金秋, 邵晓辉, 缑广林, 等. 水肥管理对热带地区双季稻田CH4和N2O排放的影响. 环境科学, 2021, 42(7): 3458-3471. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202107044.htmLi J Q, Shao X H, Gou G L, et al. Effects of water and fertilization management on CH4 and N2O emissions in double-rice paddy fields in tropical regions. Environmental Science, 2021, 42(7): 3458-3471. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202107044.htm [21] Sun Z, Guo Y, Li C, et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain. China. Environ Sci Pollut Res, 2019, 26(12): 11710-11718. [22] 徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响. 中国生态农业学报, 2017, 25(11): 1591- 1603. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201711004.htmXu X Y, Zhang M M, Peng C L, et al. Effect of rice-crayfish co-culture on greenhouse gas emission in straw-puddled paddy fields. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591-1603. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201711004.htm [23] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4): 392-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201504002.htmLin W X, Chen H F, Zhang Z X, et al. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chinese Journal of Eco-Agriculture, 2015, 23(4): 392-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201504002.htm [24] 林志敏, 李洲, 翁佩莹, 等. 再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022, 33(5): 1340-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202205022.htmLin Z M, Li Z, Weng P Y, et al. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice in southeast China. Chinese J Appl Ecology, 2022, 33(5): 1340-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202205022.htm [25] 王天宇, 樊迪, 宋开付, 等. 巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究. 农业环境科学学报, 2021, 40(8): 1829- 1838. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202108024.htmWang T Y, Fan D, Song K F, et al. Reduced methane and nitrous oxide emissions from ratoon rice paddy in Chaohu polder area, China. Journal of Agro-Environment Science, 2021, 40(8): 1829-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202108024.htm [26] 徐祥玉. 三种中稻模式稻田温室气体排放及影响因子研究. 武汉: 华中农业大学, 2020.Xu X Y. Studies on Greenhouse Gas Emissions and Influencing Factors of Three Middle-season Paddy Fields. Wuhan: Huazhong Agricultural University, 2020. [27] 吴梦琴, 李成芳, 盛锋, 等. 基于DNDC模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化. 中国生态农业学报, 2021, 29(9): 1480-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202109002.htmWu M Q, Li C F, Sheng F, et al. Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition(DNDC) model. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1480-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202109002.htm [28] 邓桥江, 曹凑贵, 李成芳. 不同再生稻栽培模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2019, 38(6): 1373-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201906024.htmDeng Q J, Cao C G, Li C F. Effects of different ratooning cultivation modes on greenhouse gas emissions and grain yields in paddy fields. Journal of Agro-Environment Science, 2019, 38(6): 1373-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201906024.htm [29] Zhang A F, Bian R J, Pan G X, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop Res, 2012, 127: 153-160. [30] Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual, 2006, 35(4): 1584-1598. [31] Xu Y, Zhan M, Cao C G, et al. Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in Central China. Agr Ecosyst Environ, 2016, 221: 87-98. [32] 刘建栋, 周秀骥, 王建林, 等. 稻田CH4排放的农业气象数值模拟研究. 应用气象学报, 2001, 12(4): 409-418. http://qikan.camscma.cn/article/id/20010456Liu J D, Zhou X J, Wang J L, et al. Numerical simulation of CH4 emission from rice paddy fields during recent 50 years. J Appl Meteor Sci, 2001, 12(4): 409-418. http://qikan.camscma.cn/article/id/20010456 [33] 夏龙龙, 颜晓元. 中国粮食作物生命周期生产过程温室气体排放的研究进展及展望. 农业环境科学学报, 2020, 39(4): 665-672. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004003.htmXia L L, Yan X Y. Research progress and prospect of greenhouse gas emissions from the life-cycle production of food crops in China. Journal of Agro-Environment Science, 2020, 39(4): 665-672. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004003.htm [34] 徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48(9): 1702-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201509004.htmXu F X, Xiong H, Zhang L, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201509004.htm [35] 周文涛, 龙文飞, 毛燕, 等. 节水轻简栽培模式下增密减氮对双季稻田温室气体排放的影响. 应用生态学报, 2020, 31(8): 2604-2612. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202008016.htmZhou W T, Long W F, Mao Y, et al. Effects of increased planting density with reduced nitrogen fertilizer application on greenhouse gas emission in double-season rice fields under water saving and simple cultivation mode. Chinese J Appl Ecology, 2020, 31(8): 2604-2612. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202008016.htm [36] 李香兰, 徐华, 蔡祖聪. 稻田CH4和N2O排放消长关系及其减排措施. 农业环境科学学报, 2008, 27(6): 2123-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200806004.htmLi X L, Xu H, Cai Z C. Trade-off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field. Journal of Agro-Environment Science, 2008, 27(6): 2123-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200806004.htm [37] 丁国安, 刘晶淼, 颜鹏, 等. 利用条件采样法在常熟稻田测定N2O大气垂直通量初步观测结果. 应用气象学报, 2004, 15(4): 456-467. http://qikan.camscma.cn/article/id/20040455Ding G A, Liu J M, Yan P, et al. Preliminary results of N2O flux measurement in low atmosphere at rice paddy in Changshu using conditional sampling. J Appl Meteor Sci, 2004, 15(4): 456-467. http://qikan.camscma.cn/article/id/20040455 [38] Nie T, Chen P, Zhang Z, et al. Effects of different types of water and nitrogen fertilizer management on greenhouse gas emissions yield and water consumption of paddy fields in cold region of China. Int J Environ Res Public Health, 2019, 16(9): 1639. [39] Li M Y, Xue L H, Zhou B B, et al. Effects of domestic sewage from different sources on greenhouse gas emission and related microorganisms in straw-returning paddy fields. Sci Total Environ, 2020, 718: 137407. [40] 丁紫娟, 徐洲, 田应兵, 等. 再生稻干湿交替灌溉与根区分层施氮减少温室气体排放. 灌溉排水学报, 2021, 40(7): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107008.htmDing Z J, Xu Z, Tian Y B, et al. Reducing gas emissions from ratooning rice field using controlled nitrogen fertilization and alternate wetting-drying irrigation. Journal of Irrigation and Drainage, 2021, 40(7): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107008.htm