Inspection of FY-3D Satellite Temperature Data Based on Horizontal Drift Round-trip Sounding Data
-
摘要: 往返式平漂探空观测(以下简称平漂探空)可实现对流层至平流层低层大气温度廓线垂直探测以及平流层低层内持续4 h的水平温度分布探测。该文介绍利用平漂探空试验数据对风云3号气象卫星D星(FY-3D)反演温度数据的检验评估算法,基于该算法和2021年3—9月长江中下游平漂探空试验数据完成对卫星反演大气温度数据的检验。结果显示:FY-3D卫星反演的温度数据准确度总体较高,与平漂探空上升段数据平均绝对偏差约为1.34℃,与下降段数据平均绝对偏差约为1.93℃;卫星反演的100 hPa以上和850 hPa以下温度误差分别偏大0.59℃和0.33℃;卫星反演平流层温度准确度低于温度廓线,平均绝对偏差约为3.92℃;与平漂探空数据相比,卫星大气温度廓线分辨率较低、趋势较平滑,无法显示大气温度垂直分布和平流层温度水平分布的细节特征。Abstract: The horizontal drift round-trip sounding observation is a new sounding technology developed by China Meteorological Administration. By releasing one sounding balloon with this technology, three sections of observations can be obtained, including two sections of vertical tropospheric sounding(ascending and descending) with an interval of about 6 hours and a 4-hour horizontal sounding within the stratosphere. This technology effectively makes up for the insufficiency of conventional soundings, improving the time and space resolution of radiosonde data at a lower cost. The detection system adopts Beidou radiosonde, which significantly improves the accuracy of sounding and wind measurements. In addition, the drift section of horizontal drift round-trip sounding observation fills the gap of the stratospheric temperature detection technology in China. Therefore, horizontal drift round-trip sounding data can be used to verify the temperature profile and stratosphere temperature data of meteorological satellite.Fengyun series meteorological satellites are widely used in China, supporting the meteorological forecast in the Eastern Hemisphere. Among Fengyun satellites in use, FY-3D has the longest years of service. To test the accuracy of FY-3D satellite temperature products, an algorithm is designed according to the characteristics of the horizontal drift round-trip sounding data and satellite data, and the temporal and spatial thresholds are calculated. Based on this algorithm, FY-3D satellite retrieved atmospheric temperature data are verified using the horizontal drift round-trip sounding data in the middle and lower reaches of the Yangtze from March to September in 2021. It can be concluded from the inspection results that the temperature data of FY-3D satellite has a high accuracy, with an average absolute deviation of about 1.34℃ from the data of ascending section and 1.9℃ from the data of descending section. Above 100 hPa and below 850 hPa, the temperature errors of satellite data are 0.59℃ and 0.33℃ larger, respectively. The average absolute deviation of the stratosphere is about 3.92℃, which is slightly larger than the ascending section and descending section. Compared with the sounding profile, the satellite temperature profile has lower vertical resolution and smoother trend, so it cannot show more details of atmospheric vertical variation.
-
图 1 2021年4月11日07:30南昌站上升段
(a)卫星与原始探空温度廓线,(b)卫星与稀疏化探空温度廓线,(c)温度误差随气压变化,(d)温度廓线误差分布(红色曲线为拟合线)
Fig. 1 Ascending section of Nanchang Station at 0730 BT 11 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
图 2 2021年4月5日19:30赣州站上升段
(a)卫星与原始探空温度廓线,(b)卫星与稀疏化探空温度廓线,(c)温度误差随气压变化曲线,(d)温度廓线误差分布(红色曲线为拟合线)
Fig. 2 Ascending section of Ganzhou Station at 1930 BT 5 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
图 3 2021年6月11日19:30长沙站平漂段
(a)卫星与原始探空温度廓线,(b)卫星与稀疏化探空温度廓线,(c)温度误差随时间变化曲线,(d)温度廓线误差分布(红色曲线为拟合线)
Fig. 3 The horizontal drift section of Changsha Station at 1930 BT 11 June 2021
(a)satellite and original sounding temperature profile, (b)satellite and sparse sounding temperature profile, (c)curve of temperature error changing with time, (d)error distribution of temperature profile(red curve denotes fitting curve)
图 4 2021年6月25日13:30武汉站下降段
(a)卫星与原始探空温度廓线,(b)卫星与稀疏化探空温度廓线,(c)温度误差随气压变化曲线,(d)温度廓线误差分布(红色曲线为拟合线)
Fig. 4 Descending section of Wuhan Station at 1330 BT 25 Jun 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
图 5 2021年4月9日01:30宜昌站下降段
(a)卫星与原始探空温度廓线,(b)卫星与稀疏化探空温度廓线,(c)温度误差随气压变化曲线,(d)温度廓线误差分布(红色曲线为拟合线)
Fig. 5 Descending section of Yichang Station at 0130 BT 9 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
表 1 卫星数据检验评估结果
Table 1 Inspection and evaluation of satellite data
平漂探空数据段 匹配次数 平均绝对偏差/℃ 均方根误差/℃ 相关系数 上升段 367 1.34 1.95 0.99 平漂段 249 3.92 4.10 0.04 下降段 769 1.93 2.46 0.99 表 2 上升段卫星数据检验评估结果
Table 2 Inspection and evaluation of satellite data at ascending section
探空站 07:30 19:30 平均绝对偏差/℃ 均方根误差/℃ 平均绝对偏差/℃ 均方根误差/℃ 武汉 1.32 1.74 1.18 1.58 南昌 1.32 1.99 1.12 1.88 宜昌 1.22 1.60 1.30 1.66 安庆 1.51 1.86 1.46 2.11 赣州 1.12 1.48 1.38 2.95 长沙 2.15 2.95 1.06 1.34 表 3 平漂段卫星数据检验评估结果
Table 3 Inspection and evaluation of satellite data at horizontal drift section
探空站 平均绝对偏差/℃ 均方根误差/℃ 武汉 3.33 3.56 南昌 3.03 3.20 宜昌 3.24 3.41 安庆 4.42 4.60 赣州 3.56 3.72 长沙 5.97 6.09 表 4 下降段卫星数据检验评估结果
Table 4 Inspection and evaluation of satellite data at descending section
探空站 13:30 01:30 平均绝对偏差/℃ 均方根误差/℃ 平均绝对偏差/℃ 均方根误差/℃ 武汉 3.67 4.43 2.16 2.73 南昌 1.33 1.79 3.32 4.30 宜昌 1.67 2.06 1.04 1.38 安庆 1.54 2.00 1.41 2.16 赣州 1.60 2.09 1.03 1.30 长沙 3.26 3.79 1.13 1.51 表 5 不同高度卫星数据的检验结果
Table 5 Test of satellite data at different altitudes
高度 平均绝对偏差/℃ 均方根误差/℃ 地面至850 hPa* 1.68 1.93 850 hPa至100 hPa** 1.16 1.62 100 hPa至10 hPa 1.75 2.21 注:*表示含850 hPa, **表示含100 hPa。 表 6 云对卫星反演温度的影响
Table 6 Influence of statistical cloud on satellite inversion temperature
探空数据段 云状态 探空湿度廓线云判识算法 FY-3D成像仪云数据 平均绝对偏差/℃ 均方根误差/℃ 平均绝对偏差/℃ 均方根误差/℃ 上升段 有云 1.60 3.01 1.63 2.92 无云 1.28 1.70 1.32 1.91 下降段 有云 2.08 2.59 1.74 2.22 无云 1.73 2.31 1.28 1.71 -
[1] 程凯琪, 郭启云, 马旭林, 等.GNSS掩星观测反演温度质量控制方法研究.电子测量与仪器学报, 2020, 34(7):177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202007023.htmCheng K Q, Guo Q Y, Ma X L, et al. Research of quality control method of GNSS occultation observation inversion temperature. J Electr Measur Instr, 2020, 34(7): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202007023.htm [2] 颜蕊, 王兰炜, 胡哲, 等. 利用地基观测对卫星观测电离层结构参数的定量验证研究. 地震学报, 2017, 39(4): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201704009.htmYan R, Wang L W, Hu Z, et al. Quantitative verification on satellite observational data of ionospheric structure parameters using ground-based data. Acta Seismologica Sinica, 2017, 39(4): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201704009.htm [3] 郭启云, 杨荣康, 程凯琪, 等. 基于探空观测的多源掩星折射率质量控制及对比. 应用气象学报, 2020, 31(1): 13-26. doi: 10.11898/1001-7313.20200102Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi: 10.11898/1001-7313.20200102 [4] 张旭鹏, 郭启云, 杨荣康, 等. 基于"上升-平漂-下降"探空资料的长江中下游暴雨同化试验. 气象, 2021, 47(12): 1512-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202112007.htmZhang X P, Guo Q Y, Yang R K, et al. Assimilation experiment of rainstorm in the middle and lower reaches of the Yangtze River based on "up-drift-down" sounding data. Meteor Mon, 2021, 47(12): 1512-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202112007.htm [5] 杨国彬, 郭启云, 舒康宁, 等. 基于名单控制方法的探空测风数据质量分析. 气象, 2021, 47(6): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106008.htmYang G B, Guo Q Y, Shu K N, et al. Quality analysis of the radiosonde wind observation data based on the list control method. Meteor Mon, 2021, 47(6): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106008.htm [6] 姚雯, 马颖, 高丽娜. L波段与59-701探空系统相对湿度对比分析. 应用气象学报, 2017, 28(2): 218-226. doi: 10.11898/1001-7313.20170209Yao W, Ma Y, Gao L N. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. doi: 10.11898/1001-7313.20170209 [7] 雷勇, 郭启云, 钱媛, 等. L波段雷达探空髙度评估及其质量标识. 应用气象学报, 2018, 29(6): 710-723. doi: 10.11898/1001-7313.20180607Lei Y, Guo Q Y, Qian Y, et al. Evaluation and quality mark of radiosonde geopotential height of L-band radar. J Appl Meteor Sci, 2018, 29(6): 710-723. doi: 10.11898/1001-7313.20180607 [8] 郭启云, 杨荣康, 钱媛, 等. 气球携带探空仪上升和降落伞携带探空仪下降的全程探空对比分析. 气象, 2018, 44(8): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201808011.htmGuo Q Y, Yang R K, Qian Y, et al. Full-range sounding comparison analysis of balloon borne radiosonde rising and parachute carrying radiosonde descending. Meteor Mon, 2018, 44(8): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201808011.htm [9] 朱元竞, 李万彪, 陈勇. GMS-5估计可降水量的研究. 应用气象学报, 1998, 9(1): 8-14. http://qikan.camscma.cn/article/id/19980102Zhu Y J, Li W B, Chen Y. Study of total precipitable water by GMS-5. J Appl Meteor Sci, 1998, 9(1): 8-14. http://qikan.camscma.cn/article/id/19980102 [10] 杜明斌, 杨引明, 丁金才. COSMIC反演精度和有关特性的检验. 应用气象学报, 2009, 20(5): 586-593. http://qikan.camscma.cn/article/id/20090510Du M B, Yang Y M, Ding J C. Evaluation for retrieving precision and some merits of COSMIC data. J Appl Meteor Sci, 2009, 20(5): 586-593. http://qikan.camscma.cn/article/id/20090510 [11] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi: 10.11898/1001-7313.20220505Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi: 10.11898/1001-7313.20220505 [12] 韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205 [13] 刘娜, 熊安元, 张强, 等对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502 [14] 曹晓钟, 郭启云, 杨荣康. 基于长时平漂间隔的上下二次探空研究. 仪器仪表学报, 2019, 40(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902023.htmCao X Z, Guo Q Y, Yang R K. Research of rising and falling twice sounding based on long-time interval of flat-floating. Chinese J Sci Instr, 2019, 40(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902023.htm [15] 杨晨义, 郭启云, 曹晓钟, 等. 基于新型往返式探空观测的下平流层重力波特征分析. 气象学报, 2021, 79(1): 150-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101011.htmYang C Y, Guo Q Y, Cao X Z, et al. Analysis of gravity wave characteristics in the lower stratosphere based on new round-trip radiosonde. Acta Meteor Sinica, 2021, 79(1): 150-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101011.htm [16] 王金成, 王丹, 杨荣康, 等. 基于高分辨率数值天气模式的往返平漂式探空轨迹预测方法及初步评估. 大气科学, 2021, 45(3): 651-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202103013.htmWang J C, Wang D, Yang R K, et al. A return radiosonde trajectory forecast method and its preliminary evaluation based on high resolution numerical weather prediction model. Chinese J Atmos Sci, 2021, 45(3): 651-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202103013.htm [17] 王丹, 王金成, 田伟红, 等. 往返式探空观测资料的质量控制及不确定性分析. 大气科学, 2020, 44(4): 865-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004013.htmWang D, Wang J C, Tian W H, et al. Quality control and uncertainty analysis of return radiosonde data. Chinese J Atmos Sci, 2020, 44(4): 865-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004013.htm [18] 梁智豪, 王东海, 梁钊明. 探空观测的边界层高度时空变化特征. 应用气象学报, 2020, 31(4): 447-459. doi: 10.11898/1001-7313.20200407Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. doi: 10.11898/1001-7313.20200407 [19] 王英, 熊安元. L波段探空仪器换型对高空湿度资料的影响. 应用气象学报, 2015, 26(1): 76-86. doi: 10.11898/1001-7313.20150108Wang Y, Xiong A Y. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. doi: 10.11898/1001-7313.20150108 [20] 钱媛, 马旭林, 郭启云, 等. 基于FNL和GRAPES分析场的探空温度数据的误差分析. 气象, 2019, 45(10): 1464-1475. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201910013.htmQian Y, Ma X L, Guo Q Y, et al. Error analysis of sounding temperature data based on the FNL and GRAPES analysis fields. Meteor Mon, 2019, 45(10): 1464-1475. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201910013.htm [21] 郭启云, 钱媛, 杨荣康, 等. L波段探空雷达测风质量控制方法研究. 大气科学学报, 2020, 43(5): 845-855.Guo Q Y, Qian Y, Yang R K, et al. Study on the quality control method of wind measurement of L-band sounding radar. Trans Atmos Sci, 2020, 43(5): 845-855. [22] 朱爱军, 胡秀清, 林曼筠, 等. 风云三号D气象卫星全球数据获取方法及数据分发. 海洋气象学报, 2018, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201803001.htmZhu A J, Hu X Q, Lin M Y, et al. Global data acquisition methods and data distribution for FY-3D meteorological satellite. J Marine Meteor, 2018, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201803001.htm [23] 段永强, 王振占, 张升伟. 风云三号(D)气象卫星微波湿温度计系统建模和仿真. 电子与信息学报, 2020, 42(6): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202006030.htmDuan Y Q, Wang Z Z, Zhang S W. Modeling and simulating of microwave humidity and temperature sounder onboard the FY-3(D) satellite. J Electr Infor Tech, 2020, 42(6): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202006030.htm [24] 谷松岩, 郭杨, 王振占, 等. 风云三号A星微波湿度计探测通道定标分析. 气象科技进展, 2013, 3(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304011.htmGu S Y, Guo Y, Wang Z Z, et al. Calibration analyses for sounding channels of MWHS onboard FY-3A. Adv Meteor Sci Tech, 2013, 3(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304011.htm [25] 王永韬, 刘良明. HDF5格式特点及其对遥感数据格式标准化的几点启示. 国土资源遥感, 2005(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200503009.htmWang Y T, Liu L M. Characteristics of HDF5 format and their reference value to the standardization of remote sensing data. Remote Sensing for Land & Resources, 2005(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200503009.htm [26] 张茂鑫, 李国春. 基于HDF5文件格式的MERSI影像数据提取的研究与实现. 现代农业科学, 2009, 16(3): 189-191;222. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSY200903079.htmZhang M X, Li G C. The Study and implementation of extraction MERSI image data based on the file format of HDF. Modern Agricultural Sciences, 2009, 16(3): 189-191;222. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSY200903079.htm [27] 黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究. 红外, 2019, 40(9): 28-38.Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38. [28] 程凯琪, 郭启云, 杨荣康, 等. GPS掩星气压的评估及质量控制. 大气科学学报, 2021, 44(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202104005.htmCheng K Q, Guo Q Y, Yang R K, et al. Assessment and quality control of GPS occultation pressure. Trans Atmos Sci, 2021, 44(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202104005.htm [29] 钱永甫, 施丹平. 高度场垂直插值方法的数值预报试验. 气象科学, 1990, 10(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199003001.htmQian Y F, Shi D P. Numerical prediction experiment of vertical interpolation method for height field. J Meteor Sci, 1990, 10(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199003001.htm [30] Bengtsson L. Problems of Using Satellite Information in Numerieal Weather Predietion//Proc of a Technical Conference. ESA, 1979(SP-143): 87-100. [31] 任强, 董佩明, 薛纪善. 台风数值预报中受云影响微波卫星资料的同化试验. 应用气象学报, 2009, 20(2): 137-146. http://qikan.camscma.cn/article/id/20090202Ren Q, Dong P M, Xue J S. The use of microwave satellite data affected by cloud in numerical forecast of typhoon. J Appl Meteor Sci, 2009, 20(2): 137-146. http://qikan.camscma.cn/article/id/20090202 [32] 周毓荃, 欧建军. 利用探空数据分析云垂直结构的方法及其应用研究. 气象, 2010, 36(11): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011011.htmZhou Y Q, Ou J J. The method of cloud vertical structure analysis using rawinsonde observation and its applied research. Meteor Mon, 2010, 36(11): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011011.htm [33] 刘健, 王锡津. 主要卫星云气候数据集评述. 应用气象学报, 2017, 28(6): 654-665. doi: 10.11898/1001-7313.20170602Liu J, Wang X J. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci, 2017, 28(6): 654-665. doi: 10.11898/1001-7313.20170602