Environmental Characteristics of Extratropical Cyclone Tornadoes in Liaoning
-
摘要: 利用欧洲中期天气预报中心ERA5再分析数据, 统计1979—2020年辽宁省42个温带气旋龙卷环境背景和物理量参数特征, 结果表明:辽宁省温带气旋龙卷多发于温带气旋中心的西南、东南象限, 与冷锋前暖区相对应, 主要分布在辽河平原中西部及渤海湾沿岸, 强龙卷(EF2及以上级别)占比为28.6%。风暴相对螺旋度和对流有效位能的大值区出现在气旋西南—东南象限, 呈带状分布, 龙卷风暴主要分布于风暴相对螺旋度大值区西北侧、对流有效位能大值区的顶端的强梯度区附近。强龙卷参数最大值达0.7, 其大值区与EF2及以上级别龙卷相对应。地面冷锋和干线是温带气旋龙卷的关键触发系统, 对比近气旋中心和冷锋尾部湿度垂直分布, 后者所表现的高层强干侵入导致风暴产生更强的冷池, 过强的下沉气流可能是龙卷产生的不利因素。温带气旋龙卷多分布于高空急流左侧气流的分流区内, 对应高空强辐散区。0~3 km垂直温度递减率大值区与气旋中心附近的弱龙卷高发区有较好对应关系。Abstract: Liaoning is one of the active regions for tornadoes in China, and the generation of a considerable number of tornadoes is associated with extratropical cyclones. In order to improve the understanding of environmental background and physical parameter characteristics, 42 extratropical cyclone tornadoes in Liaoning from 1979 to 2020 are statistically analyzed. The study is based on the reanalysis data of ERA5(ECMWF Reanalysis V5), combining with records of China Meteorological Disaster Classic and China Meteorological Disaster Yearbook. Results show that extratropical cyclone tornadoes are mainly distributed in the central and western Liaohe Plain and along the coast of the Bohai Bay. Significant tornadoes(EF2 and above) account for 28.6% of all extratropical cyclone tornadoes.Extratropical cyclone tornadoes occur mostly in the southwest and southeast quadrants of extratropical cyclones, corresponding to the warm area before the cold front. The high-value area of the storm relative helicity and convective available potential energy(CAPE) appear in the southwest-southeast quadrant of the extratropical cyclones, with a belt-like distribution. Extratropical cyclone tornadoes are mainly distributed within 1° of latitude in the northwest of the large-value area of storm relative helicity and the strong gradient area at the top of the large-value area of CAPE. The strong tornado parameter(STP) center is located near the -2° of longitude distance and -5° of latitude distance from the center of tornadic extratropical cyclones, and the maximum value is above 0.7. The large value area of STP corresponds to the high-incidence area of EF2 and above extratropical cyclone tornadoes. The cold front and dry line in the surface are the key trigger of extratropical cyclone tornadoes, and the induced tornadoes are mainly distributed near the warm ridge of temperature field and the top of the tongue of humidity field. Comparing the vertical distribution of humidity near the center of tornadic extratropical cyclones and the tail of the cold front, the strong cold pool caused by the strong high-level dry intrusion can generate excessively strong downdraft, which may be an unfavorable factor for tornado formation. Extratropical cyclone tornadoes are mostly distributed in the distributary area of the left air flow of the upper-level jet, corresponding to the strong upper-level divergence area. The large value area of 0-3 km vertical temperature lapse rate has a good correspondence with the high incidence area of weak tornadoes near the center of extratropical cyclones.
-
Key words:
- tornado;
- extratropical cyclone;
- environmental parameters;
- Liaoning
-
图 3 龙卷相对温带气旋中心分布
(黑色等值线为900 hPa位势高度,单位:dagpm;风羽为900 hPa风场;填色为900 hPa相对涡度;蓝色标记为龙卷;蓝色等值线为龙卷分布的核密度估计,最内圈为90%,最外圈为10%;气旋中心位于(0, 0))
Fig. 3 Spatial distribution of tornado relative to the center of extratropical cyclone
(the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the shaded denotes relative vorticity at 900 hPa; the blue mark denotes tornado;the blue isoline denotes the kernel density estimation of tornadoes, the innermost(outermost) circle is 90%(10%); the center of extratropical cyclone is located at (0, 0))
图 4 产生龙卷的温带气旋附近的0~1 km风暴相对螺旋度(填色) 分布
(黑色等值线为900 hPa位势高度,单位:dagpm;风羽为900 hPa风场;蓝色标记为龙卷;气旋中心位于(0, 0))
Fig. 4 Distribution of 0-1 km storm relative helicity (the shaded) near tornadic extratropical cyclone
(the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))
图 7 产生龙卷的温带气旋附近地面2 m温度(填色) (a)、2 m露点(填色) (b)分布
(黑色等值线为海平面气压场,单位:hPa;风羽为地面10 m风场;蓝色标记为龙卷;气旋中心位于(0, 0))
Fig. 7 Distribution of temperature at 2 m (the shaded) (a), dew point temperature at 2 m (the shaded) (b) near tornadic extratropical cyclone
(the black isoline denotes the sea level pressure, unit:hPa;the barb denotes the wind at 10 m; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))
图 9 产生龙卷的温带气旋附近200 hPa形势场
(黑色等值线为200 hPa位势高度,单位:dagpm;棕色等值线为200 hPa等风速线,单位:m·s-1;蓝色等值线为90%龙卷核密度分布估计;风矢为200 hPa风场;填色为200 hPa散度)
Fig. 9 Distribution of weather situation field at 200 hPa near tornadic extratropical cyclone
(the black isoline denotes the height at 200 hPa, unit:dagpm;the brown isoline denotes the velocity at 200 hPa, unit:m·s-1;the blue isoline denotes 90% kernel density estimation of tornadoes; the vector denotes the wind at 200 hPa; the shaded denotes the divergence at 200 hPa)
表 1 1979—2020年辽宁省温带气旋龙卷
Table 1 Extratropical cyclone tornado in Liaoning from 1979 to 2020
序号 时间 龙卷发生地 强度等级 来源 1 1980-06-20 兴城 EF2 《中国气象灾害大典》(辽宁卷) 2 1980-07-21 辽阳县 EF2 《中国气象灾害大典》(辽宁卷) 3 1983-07-04 瓦房店 EF0 地面观测 4 1983-07-21 瓦房店 EF1 《中国气象灾害大典》(辽宁卷) 5 1983-09-14 普兰店 EF1 《中国气象灾害大典》(辽宁卷) 6 1983-09-14 绥中 EF2 《中国气象灾害大典》(辽宁卷) 7 1984-05-27 义县 EF2 县级历史气象灾情收集资料 8 1984-06-09 喀左 EF0 县级历史气象灾情收集资料 9 1985-06-10 建昌 EF0 县级历史气象灾情收集资料 10 1986-07-14 苏家屯 EF2 《辽宁省志》(气象志) 11 1986-07-14 黑山 EF2 《辽宁省志》(气象志) 12 1986-07-14 葫芦岛 EF1 县级历史气象灾情收集资料 13 1986-07-22 阜新县 EF0 县级历史气象灾情收集资料 14 1986-08-08 康平 EF2 县级历史气象灾情收集资料 15 1986-08-12 阜新县 EF1 县级历史气象灾情收集资料 16 1987-06-19 朝阳县 EF1 县级历史气象灾情收集资料 17 1987-07-13 营口 EF0 地面观测 18 1988-09-06 北票 EF1 《辽宁省志》(气象志) 19 1988-09-06 阜新县 EF2 《辽宁省志》(气象志) 20 1989-06-24 阜新县 EF1 县级历史气象灾情收集资料 21 1989-05-18 阜新县 EF1 县级历史气象灾情收集资料 22 1990-06-22 大洼 EF1 县级历史气象灾情收集资料 23 1990-08-12 辽阳县 EF3 《辽宁省志》(气象志) 24 1991-07-15 阜新县 EF0 县级历史气象灾情收集资料 25 1992-08-10 黑山 EF2 《辽宁省志》(气象志) 26 1993-06-06 葫芦岛 EF1 县级历史气象灾情收集资料 27 1993-06-07 新民 EF0 县级历史气象灾情收集资料 28 1993-08-12 彰武 EF1 县级历史气象灾情收集资料 29 1996-09-19 庄河 EF1 县级历史气象灾情收集资料 30 1998-05-26 康平 EF1 县级历史气象灾情收集资料 31 2000-07-13 葫芦岛 EF1 县级历史气象灾情收集资料 32 2000-08-23 黑山 EF1 县级历史气象灾情收集资料 33 2002-07-31 辽中 EF1 地面观测 34 2005-06-01 绥中 EF1 县级历史气象灾情收集资料 35 2005-06-10 朝阳县 EF3 《中国气象灾害年鉴》 36 2005-06-11 沈阳 EF0 县级历史气象灾情收集资料 37 2005-07-01 盘山 EF0 县级历史气象灾情收集资料 38 2005-08-10 盖州 EF1 县级历史气象灾情收集资料 39 2010-07-27 彰武 EF1 县级历史气象灾情收集资料 40 2012-06-04 铁岭县 EF2 县级历史气象灾情收集资料 41 2012-07-02 大连 EF0 县级历史气象灾情收集资料 42 2013-09-06 大连 EF0 县级历史气象灾情收集资料 -
[1] 范雯杰, 俞小鼎.中国龙卷的时空分布特征.气象, 2015, 41(7):793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htmFan W J, Yu X D. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm [2] 郑永光. 中国龙卷气候特征和环境条件研究进展综述. 气象科技进展, 2020, 10(6): 69-75. doi: 10.3969/j.issn.2095-1973.2020.06.012Zheng Y G. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Tech, 2020, 10(6): 69-75. doi: 10.3969/j.issn.2095-1973.2020.06.012 [3] 魏文秀, 赵亚民. 中国龙卷风的若干特征. 气象, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htmWei W X, Zhao Y M. Characteristic of tornadoes in China. Meteor Mon, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm [4] Yao Y Q, Yu X D, Zhang Y J, et al. Climate analysis of tornadoes in China. J Meteor Res, 2015, 29(3): 359-369. doi: 10.1007/s13351-015-4983-0 [5] 才奎志, 姚秀萍, 孙晓巍, 等. 冷涡背景下辽宁龙卷气候特征和环境条件. 气象学报, 2022, 80(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201006.htmCai K Z, Yao X P, Sun X W, et al. Climatic characteristics and environmental conditions of tornadoes in Liaoning under the background of cold vortex. Acta Meteor Sinica, 2022, 80(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201006.htm [6] 袁潮, 王式功, 马湘宜, 等. 2019年7月3日开原龙卷形成环境背景及机理探究. 高原气象, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htmYuan C, Wang S G, Ma X Y, et al. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm [7] Davies-Jones R, Trapp R J, Bluestein H B. Tornadoes and Tornadic Storms//Doswell Ⅲ C A. Severe Convective Storms. Boston, MA: American Meteorological Society, 2001: 167-221. [8] Marquis J N, Richardson Y P, Markowski P M, et al. Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon Wea Rev, 2012, 140(1): 3-27. doi: 10.1175/MWR-D-11-00025.1 [9] Trapp R J, Weisman M L. Low-level mesovortices within squall lines and bow echoes. Part Ⅱ: Their genesis and implications. Mon Wea Rev, 2003, 131(2): 804-823. [10] Atkins N T, Laurent S T. Bow echo mesovortices. Part Ⅱ: Their genesis. Mon Wea Rev, 2009, 137(5): 1514-1532. doi: 10.1175/2008MWR2650.1 [11] Wakimoto R M, Wilson J W. Non-supercell tornadoes. Mon Wea Rev, 1989, 117(6): 1113-1140. doi: 10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2 [12] 俞小鼎, 赵娟, 范雯杰. 中国龙卷的时空分布与关键环境参数特征. 热带气象学报, 2021, 37(增刊Ⅰ): 681-692. doi: 10.16032/j.issn.1004-4965.2021.064Yu X D, Zhao J, Fan W J. Tornadoes in China: Spatiotemporal distribution and environmental characteristics. J Trop Meteor, 2021, 37(SupplⅠ): 681-692. doi: 10.16032/j.issn.1004-4965.2021.064 [13] Johns R H, Davies J M, Leftwich P W. An Examination of the Relationship of 0-2 km AGL "Positive" Wind Shear to Potential Buoyant Energy in Strong and Violent Tornado Situation//16th Conference on Severe Local Storms. Alber, American Meteorological Society, 1990: 593-598. [14] Rasmussen E N, Blanchard D O. A baseline climatology of sounding derived supercell and tornado forecast parameters. Wea Forecasting, 1998, 13(4): 1148-1164. doi: 10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2 [15] Brooks H E, Lee J W, Craven J P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res, 2003, 67/68: 73-94. doi: 10.1016/S0169-8095(03)00045-0 [16] Craven J P, Brooks H E, Hart J A, et al. Baseline climatology of sounding derived parameters associated with deep moist convection. Natl Wea Dig, 2004, 28: 13-24. [17] Johns R H, Doswell C A. Severe local storms forecasting. Wea Forecasting, 1992, 7(4): 588-612. doi: 10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2 [18] Stensrud D J, Cortinas J V, Brooks H E. Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea Forecasting, 1997, 12(3): 613-632. doi: 10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2 [19] Gaffin D M, Parker S S. A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region. Wea Forecasting, 2006, 21(5): 735-751. doi: 10.1175/WAF951.1 [20] Tochimoto E, Niino H. Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Mon Wea Rev, 2016, 144(3): 945-969. doi: 10.1175/MWR-D-15-0015.1 [21] Rasmussen E N, Richardson S, Straka J M, et al. The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon Wea Rev, 2000, 128(1): 174-191. doi: 10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2 [22] Mercer A E, Shafer C M, Doswell C A, et al. Objective classification of tornadic and nontornadic severe weather outbreaks. Mon Wea Rev, 2009, 137(12): 4355-4368. doi: 10.1175/2009MWR2897.1 [23] Mercer A E, Shafer C M, Doswell C A, et al. Synoptic composites of tornadic and nontornadic outbreaks. Mon Wea Rev, 2012, 140(8): 2590-2608. doi: 10.1175/MWR-D-12-00029.1 [24] Shafer C M, Mercer A E, Doswell C A, et al. Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synoptic-scale input. Mon Wea Rev, 2009, 137(4): 1250-1271. doi: 10.1175/2008MWR2597.1 [25] Shafer C M, Mercer A E, Leslie L M, et al. Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon Wea Rev, 2010, 138(11): 4098-4119. doi: 10.1175/2010MWR3269.1 [26] Schultz D M, Winters A C, Colle B A, et al. Extratropical cyclones: A century of research on meteorology's centerpiece. Meteor Monogr, 2019, 59: 16.1-16.56. doi: 10.1175/AMSMONOGRAPHS-D-18-0015.1 [27] 高松影, 赵婷婷, 宋丽丽, 等. 影响东北的两个罕见气旋发展机制对比. 应用气象学报, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504 [28] Hamill T M, Schneider R S, Brooks H E, et al. The May 2003 extended tornado outbreak. Bull Amer Meteor Soc, 2005, 86(4): 531-542. doi: 10.1175/BAMS-86-4-531 [29] Niino H, Fujitani T, Watanabe N. A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993. J Climate, 2010, 10(7): 1730-1752. [30] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401 [31] 张家国, 王珏, 吴涛, 等. 长江中游地区极端降水主要天气系统类型分析. 暴雨灾害, 2018, 37(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801003.htmZhang J G, Wang J, Wu T, et al. Weather system types of extreme precipitation in the middle reaches of the Yangtze River. Torrential Rain Disaster, 2018, 37(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801003.htm [32] 刘硕, 李得勤, 赛瀚, 等. 台风"狮子山"并入温带气旋过程及引发东北强降水的分析. 高原气象, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htmLiu S, Li D Q, Sai H, et al. The physical mechanism and strong precipitation in Northeast China analysis during Typhoon "Lionrock" merging into extratropical cyclone process. Plateau Meteor, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm [33] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi: 10.11898/1001-7313.20200306Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi: 10.11898/1001-7313.20200306 [34] 许健民. 温带气旋和梅雨锋的卫星云图特征. 气象科技进展, 2021, 11(3): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103008.htmXu J M. Satellite imagery characteristics for extratropical cyclones and meiyu fronts. Adv Meteor Sci Tech, 2021, 11(3): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103008.htm [35] 王秀明, 俞小鼎, 周小刚. 中国东北龙卷研究: 环境特征分析. 气象学报, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htmWang X M, Yu X D, Zhou X G. Study of Northeast China torandoes: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm [36] 杨伟, 方阳, 蒋帅, 等. 2017年8月13日东洞庭湖水龙卷特征. 应用气象学报, 2020, 31(3): 328-338. doi: 10.11898/1001-7313.20200307Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in East Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi: 10.11898/1001-7313.20200307 [37] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析. 气象学报, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htmHuang X X, Yu X D, Yan L J, et al. An analysis on tornadoes in Typhoon Ewiniar. Acta Meteor Sinica, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm [38] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比. 应用气象学报, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107 [39] Bai L Q, Meng Z Y, Huang L, et al. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 Tornado in China produced by the landfalling Typhoon Mujigae(2015). Bull Amer Meteor Soc, 2017, 98(12): 2619-2640. [40] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [41] 王婷婷, 王宁, 姚瑶, 等. 东北冷涡背景下两类龙卷形成机制的对比分析. 气象与环境学报, 2017, 33(6): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201706002.htmWang T T, Wang N, Yao Y, et al. Comparison analysis of formation mechanisms of two tornado cases under the background of northeast cold vortex. J Meteor Environ, 2017, 33(6): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201706002.htm [42] 王宁, 王婷婷, 张硕, 等. 东北冷涡背景下一次龙卷过程的观测分析. 应用气象学报, 2014, 25(4): 463-469. http://qikan.camscma.cn/article/id/20140409Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the circulation background of northeast cold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. http://qikan.camscma.cn/article/id/20140409 [43] 蔡康龙, 黄先香, 戴春容, 等. 2020年8月9日黑龙江绥化龙卷灾情调查与天气雷达识别. 热带气象学报, 2021, 37(增刊Ⅰ): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2021Z1009.htmCai K L, Huang X X, Dai C R, et al. Damage survey and weather radar identification of the tornado on August 9, 2020 in Suihua, Heilongjiang Province. J Trop Meteor, 2021, 37(SupplⅠ): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2021Z1009.htm [44] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi: 10.11898/1001-7313.20220305 [45] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估. 海洋气象学报, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htmMeng X G, Guo J J, Han Y Q. Preliminarily assessment of ERA5 reanalysis data. J Marine Meteor, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm [46] 王秀明, 俞小鼎, 朱禾. NCEP再分析资料在强对流环境分析中的应用. 应用气象学报, 2012, 23(2): 139-146. http://qikan.camscma.cn/article/id/20120202Wang X M, Yu X D, Zhu H. The applicability of NCEP reanalysis data to severe convection environment analysis. J Appl Meteor Sci, 2012, 23(2): 139-146. http://qikan.camscma.cn/article/id/20120202 [47] Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Climate, 2011, 24(18): 4888-4906. [48] Woodall G R. Qualitative Analysis and Forecasting of Tornado Activity Using Storm-relative Environmental Helicity//16th Conf on Severe Local Storm. American Meteorological Society, 1990: 311-315. [49] Grams J S, Thompson R L, Snively D V, et al. A climatology and comparison of parameters for significant tornado events in the United States. Wea Forecasting, 2012, 27(1): 106-123. [50] Wind Science and Engineering Center. A Recommendation for an Enhance Fujita Scale(EF-scale). Wind Science and Engineering Center Rep, Texas Tech University, Lubbock, TX, 2004. [51] Schultz D M, Richardson Y P, Markowski P M, et al. Tornadoes in the Central United States and the "Clash of Air Masses". Bull Amer Meteor Soc, 2014, 95(11): 1704-1712. [52] Doswell C A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea Forecasting, 1987, 2(1): 3-16. [53] Davies J M. Tornadoes in environments with small helicity and/or high LCL heights. Wea Forecasting, 2006, 21(4): 579-594.