Performance Evaluation of CMA-BJ V2.0 System for Precipitation Forecast in North China
-
摘要: 利用CMA-BJ V2.0系统在2021年汛期(6—9月)华北地区预报的平均日降水量和24 h内逐时降水量,评估不同水平分辨率(3 km和9 km)在降水量、有效降水时次占比、降水强度、降水日变化等方面的预报性能。结果表明:9 km和3 km分辨率预报均可较好地反映降水量和落区,捕捉平均日降水量大于8 mm的降水区域分布特征,但降水量级的预报较观测偏大;对小时降水量和有效降水时次占比日变化的预报与观测基本一致,但对傍晚的峰值预报偏强,且多个时段空报,同时高估了小时降水量。与9 km分辨率预报相比,3 km分辨率预报对有效降水时次占比随累积降水量的变化趋势与观测更接近,对小时有效降水时次占比日变化、峰谷值出现时间的预报也与观测更接近。9 km分辨率预报对弱降水过程的预报能力更优,而3 km分辨率预报对强降水过程的预报能力更优。
-
关键词:
- CMA-BJ V2.0预报系统;
- 偏差特征;
- 定量降水预报评估
Abstract: To meet the requirement of numerical weather forecast for local severe convective weather, especially disastrous weather and extreme weather events, based on CMA-BJ V2.0 system, many works have been implemented, including increasing the model vertical layer to 59 layers, testing different physical parameterization schemes, assimilating unconventional local dense data such as wind profile radar and the near surface data, developing rapid cycle technology, and applying the incremental analysis update initialization technique of large-scale dynamic hybrid scheme for forecast field. By integrating all the jobs mentioned, the rapid analysis and forecast system CMA-BJ V2.0 has been established and put into operational run since June 2021 with 1 h time interval. A large number of tests and evaluations on multiple versions of the CMA-BJ numerical forecast system have been carried out. It is confirmed that the forecast skills of the model are improving year by year. There are still some problems in the forecast, such as heavy precipitation, high percentage of effective precipitation hours, and large deviation in the forecast of weak precipitation. Based upon 24 h precipitation forecast and 24 h hourly precipitation forecast information in North China on each day of the 2021 flood season (June to September), the comprehensive performance of CMA-BJ V2.0 forecast system with different resolutions (3 km and 9 km) is carefully evaluated and analyzed in terms of accumulation, percentage of effective precipitation hours, precipitation intensity, and daily cycle characteristics. The results show that both 9 km and 3 km resolutions can forecast the precipitation level and the rainfall area well and capture the regional distribution characteristics of precipitation with daily average precipitation greater than 8 mm well, but the forecast of precipitation level is larger than the observation. The forecast of hourly precipitation and the daily cycle of percentage of effective precipitation hours in North China is generally consistent with the observation, but the forecast of the peak in the evening is strong. The hourly precipitation is overestimated due to false alarms. For 3 km resolution forecast, the trend of percentage of effective precipitation hours is more similar to the observation. The magnitudes are closer to the observation than 9 km resolution forecast. 9 km resolution forecasts have better forecasting ability for weak precipitation processes, while 3 km resolution forecast is better at strong precipitation processes. The forecast results of a typical precipitation case in North China on 21 July 2021 are consistent with the test results of the average of the whole flood season: The model of both resolutions can better forecast the precipitation process, but the amount and percentage of effective precipitation hours is overestimated. -
表 1 9 km和3 km分辨率预报与观测的均方根误差及空间相关系数
Table 1 Root mean square error and correlation coefficient between observation and forecast with 9 km and 3 km resolutions
变量 分类 均方根误差 空间相关系数 9 km分辨率预报 3 km分辨率预报 9 km分辨率预报 3 km分辨率预报 平均日降水量/mm 1.38 1.48 0.71 0.70 有效降水时次占比/% 雨日 14.23 8.98 0.59 0.45 强降水日 2.20 2.40 0.62 0.60 降水强度/(mm·d-1) 雨日 3.57 3.17 0.68 0.67 强降水日 15.67 13.43 0.23 0.29 -
[1] 齐道日娜, 何立富, 王秀明, 等. "7.20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [2] 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望. 气象科技进展, 2021, 11(3): 155-164. doi: 10.3969/j.issn.2095-1973.2021.03.018Chen H M, Li P X, Zhao Y. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution. Adv Meteor Sci Tech, 2021, 11(3): 155-164. doi: 10.3969/j.issn.2095-1973.2021.03.018 [3] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展. 应用气象学报, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi: 10.11898/1001-7313.20160503 [4] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [5] Prein A, Langhans F, Fosser W, et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev Geo, 2015, 53(2): 323-361. [6] 许晨璐, 王建捷, 黄丽萍. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估. 气象学报, 2017, 75(6): 851-876. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201706001.htmXu L C, Wang J J, Huang L P. Evaluation of QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteor Sinica, 2017, 75(6): 851-876. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201706001.htm [7] Barnaby S, Love A, Matthews J, et al. The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart J Roy Meteor Soc, 2011, 137(657): 934-947. doi: 10.1002/qj.809 [8] Seity Y, Brousseau P, Malardel S, et al. The AROME-France convective-scale operational model. Mon Wea Rev, 2011, 139(3): 976-991. doi: 10.1175/2010MWR3425.1 [9] Koo M S, Hong S Y. Diurnal variations of simulated precipitation over East Asia in two regional climate models. J Geophys Res, 2010, 115(5): D05105. [10] Dai A. Precipitation characteristics in eighteen coupled climate models. J Climate, 2006, 19(18): 4605-4630. doi: 10.1175/JCLI3884.1 [11] 谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304 [12] 张冰, 郑媛媛, 沈菲菲, 等. 2017年苏南一次特大暴雨高分辨率模拟及特征分析. 气象科学, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htmZhang B, Zheng Y Y, Shen F F, et al. Characteristics and simulation of a torrential rainstorm over southern Jiangsu in 2017 revealed by a high-resolution numerical model. J Meteor Sci, 2021, 41(3): 386-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202103011.htm [13] 刘郁珏, 黄倩倩, 张涵斌, 等. 基于大涡模拟的冬奥赛区风环境精细化评估. 应用气象学报, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201Liu Y J, Huang Q Q, Zhang H B, et al. Refined assessment of wind environment over Winter Olympic competition zone based on large eddy simulation. J Appl Meteor Sci, 2022, 33(2): 129-141. doi: 10.11898/1001-7313.20220201 [14] 段亚鹏, 王东海, 刘英. "东方之星"翻沉事件强对流天气分析及数值模拟. 应用气象学报, 2017, 28(6): 666-677. doi: 10.11898/1001-7313.20170603Duan Y P, Wang D H, Liu Y. Radar analysis and numerical simulation of strong convective weather for "Oriental Star" depression. J Appl Meteor Sci, 2017, 28(6): 666-677. doi: 10.11898/1001-7313.20170603 [15] 黄丽萍, 陈德辉, 邓莲堂, 等. GRAPES_Meso V4.0主要技术改进和预报效果检验. 应用气象学报, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103 [16] Chen H M, Yuan W H, Li J, et al. A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau. Adv Atmos Sci, 2012, 29(1): 193-200. [17] 王在文, 梁旭东, 范水勇. 数值模式降水评分对分辨率的敏感性初探. 暴雨灾害, 2016, 35(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201601002.htmWang Z W, Liang X D, Fan S Y. Impact of spatial resolution on precipitation forecast score in numerical weather prediction models. Torrential Rain Disaster, 2016, 35(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201601002.htm [18] Roberts N M, Lean H W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Wea Rev, 2008, 136(1): 78-97. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=983EA56CC6B5BE7DF20EBAF6177C91EB?doi=10.1.1.656.5400&rep=rep1&type=pdf [19] 唐文苑, 郑永光, 张小雯. 基于FSS的高分辨率模式华北对流预报能力评估. 应用气象学报, 2018, 29(5): 513-523. doi: 10.11898/1001-7313.20180501Tang W Y, Zheng Y G, Zhang X W. FSS-based evaluation on convective weather forecasts in North China from high resolution models. J Appl Meteor Sci, 2018, 29(5): 513-523. doi: 10.11898/1001-7313.20180501 [20] Christopher D, Barbara B, Randy B. Object-based verification of precipitation forecasts. Part Ⅰ: Methodology and application to mesoscale rain areas. Mon Wea Rev, 2006, 134: 1772-1784. [21] Christopher D, Barbara B, Randy B. Object-based verification of precipitation forecasts. Part Ⅱ: Application to convective rain systems. Mon Wea Rev, 2006, 134: 1785-1795. [22] Wernli H, Paulat M, Hagen M. SAL-A novel quality measure for the verification of quantitative precipitation forecasts. Mon Wea Rev, 2008, 136(11): 4470-4487. [23] 陈静, 刘凑华, 陈法敬, 等. 一种基于可预报性的暴雨预报评分新方法Ⅰ: 中国暴雨可预报性综合指数. 气象学报, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htmChen J, Liu C H, Chen F J, et al. A new verification method for heavy rainfall forecast based on predictability Ⅰ: Synthetic predictability index of heavy rainfall in China. Acta Meteor Sinica, 2019, 77(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901002.htm [24] 陈法敬, 陈静, 韦青, 等. 一种基于可预报性的暴雨预报评分新方法Ⅱ: 暴雨检验评分模型及评估试验. 气象学报, 2019, 77(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901003.htmChen F J, Chen J, Wei Q, et al. A new verification method for heavy rainfall forecast based on predictability Ⅱ: Verification method and test. Acta Meteor Sinica, 2019, 77(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201901003.htm [25] 陈法敬, 陈静. "SEEPS"降水预报检验评分方法在我国降水预报中的应用试验. 气象科技进展, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htmChen F J, Chen J. The application experiment of a new score for precipitation verification based on the SEEPS principle. Adv Meteor Sci Tech, 2015, 5(5): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201505006.htm [26] 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展. 气象学报, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htmYu R C, Li J, Chen H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China. Acta Meteor Sinica, 2014, 72(5): 948-968. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htm [27] 甘玉婷, 陈昊明, 李建. 千米尺度数值预报模式对泰山地区暖季降水预报性能的评估. 气象学报, 2021, 79(5): 750-768. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105003.htmGan Y T, Chen H M, Li J. Evaluation of the performance of kilometer scale numerical operation forecast model for warm season precipitation forecasting in Taishan region. Acta Meteor Sinica, 2021, 79(5): 750-768. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105003.htm [28] 范水勇, 陈敏, 仲跻芹, 等. 北京地区高分辨率快速循环同化预报系统性能检验和评估. 暴雨灾害, 2009, 28(2): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200902005.htmFan S Y, Chen M, Zhong J Q, et al. Performance tests and evaluations of Beijing local high-resolution rapid update cycle system. Torrential Rain Disaster, 2009, 28(2): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200902005.htm [29] 卢冰, 孙继松, 仲跻芹, 等. 区域数值预报系统在北京地区的降水日变化预报偏差特征及成因分析. 气象学报, 2017, 75(2): 248-259. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201702005.htmLu B, Sun J S, Zhong J Q, et al. Analysis of characteristic bias in diurnal precipitation variation forecasts and possible reasons in a regional forecast system over Beijing Area. Acta Meteor Sinica, 2017, 75(2): 248-259. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201702005.htm [30] Lu B, Zhong J Q, Wang W, et al. Influence of near real-time green vegetation fraction data on numerical weather prediction by WRF over North China. J Meteor Res, 2021, 35(3): 505-520. [31] 王玉虹, Bica Benedikt. 不同天气背景下京津冀降水临近外推预报. 应用气象学报, 2022, 33(3): 270-281. doi: 10.11898/1001-7313.20220302Wang Y H, Bica B. Precipitation extrapolation nowcasting in Beijing-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. doi: 10.11898/1001-7313.20220302 [32] He H Z, Zhang F Q. Diurnal variations of warm-season precipitation over Northern China. Mon Wea Rev, 2010, 138(4): 1017-1025. [33] 王雨. 2004年主汛期各数值预报模式定量降水预报评估. 应用气象学报, 2006, 17(3): 316-324. http://qikan.camscma.cn/article/id/20060357Wang Y. Evaluation of quantitative precipitation forecasting of multiple NWP models in summer of 2004. J Appl Meteor Sci, 2006, 17(3): 316-324. http://qikan.camscma.cn/article/id/20060357 [34] 卢冰, 王薇, 杨扬, 等. WRF中土壤图及参数表的更新对华北夏季预报的影响研究. 气象学报, 2019, 77(6): 1028-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906005.htmLu B, Wang W, Yang Y, et al. Updated soil map and soil hydrologic parameters for WRF and their influences over North China during the warm season. Acta Meteor Sinica, 2019, 77(6): 1028-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906005.htm [35] 杨扬, 卢冰, 王薇, 等. 基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究. 气象学报, 2021, 79(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202104006.htmYang Y, Lu B, Wang W, et al. Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model. Acta Meteor Sinica, 2021, 79(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202104006.htm [36] 张鑫宇, 陈敏, 孙娟珍, 等. WRF-DA中地面观测资料同化方案的改进与应用. 气象学报, 2021, 79(1): 104-118. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101008.htmZhang X Y, Chen M, Sun J Z, et al. Improvement and application of the ground observation data assimilation scheme in WRF-DA. Acta Meteor Sinica, 2021, 79(1): 104-118. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101008.htm