Verification of Rainstorm Based on Numerical Model About CMA-TYM and SCMOC in Nenjiang Basin
-
摘要: 选取2021年嫩江流域9个暴雨日,利用降水融合产品,采用CRA空间检验,对区域台风数值预报系统(CMA-TYM)和国家级智能网格指导预报(SCMOC)20:00起报的24 h降水预报产品进行检验。结果表明:CMA-TYM和SCMOC预报的最大降水量位置均偏西、偏北,CMA-TYM和SCMOC预报的降水落区均偏西,但前者偏北,后者略偏南,SCMOC预报优于CMA-TYM。误差分析表明:CMA-TYM和SCMOC预报的暴雨落区最大降水量和平均降水量比实况偏小,格点数、面积较实况偏大,但整体上,CMA-TYM预报更接近实况。CRA空间检验显示,CMA-TYM预报的降水强度和落区形态、SCMOC预报的降水落区位置和形态较接近实况,具有一定指示意义。
-
关键词:
- 嫩江流域暴雨;
- CMA-TYM和SCMOC预报产品;
- CRA空间检验
Abstract: The Nenjiang is the north source of the Songhua River. Nenjiang Basin is an important commodity grain base in China. The change of water level in Nenjiang Basin during the flood season is closely related to the precipitation, especially the continuous rainstorm and heavy rainstorm are very easy to cause flood disaster. For example, Nenjiang Basin is affected by the continuous rainstorm and heavy rainstorm weather on 18 July 2021, the Yong'an Reservoir bursted, the Xin'an Reservoir collapsed, residents across the towns are hit by the flood disaster. The flood in Nenjiang Basin has great impacts on the national economy and people's lives. Therefore, in order to improve the accuracy of rainstorm prediction in Nenjiang Basin, the deviation between CMA-TYM and SCMOC precipitation products are analyzed from the aspects of rainstorm area and intensity, and the correction ability is improved, which has certain practical significance for agricultural production, reservoir storage, and water resource allocation in the basin. At the same time, it also provides a strong guarantee for forecast warning, people's lives and property security, and sustainable healthy development of social. Nine rainstorm days are selected in 2021, using merged precipitation, based on numerical model products by CMA-TYM and SCMOC, the contiguous rain area (CRA) technique is used to test 24 h precipitation predicted at 2000 BT. The results show that maximum precipitation position deviation of rainstorm days predicted by CMA-TYM and SCMOC are west and north, but precipitation location of rainstorm days tested by CRA technique are west, the former is north, the latter is slightly south. SCMOC prediction preforms better than CMA-TYM. Error analysis show that, it is smaller than the precipitation observation that maximum precipitation value and average precipitation of observed rainstorm area predicted by CMA-TYM and SCMOC, but the grid numbers and area are larger than the observation. On the whole, CMA_TYM forecast is closer to the observation. CRA technique shows that the intensity and pattern of precipitation location predicted by CMA-TYM, location and pattern of precipitation predicted by SCMOC are close to the observation, and it has certain instructive significance. -
图 1 2021年7月18日嫩江流域暴雨落区(红色三角表示永安水库和新发水库位置,蓝线表示嫩江流域二级和三级河流,下同) (a)降水融合产品暴雨落区(填色),(b)CRA空间检验的CMA-TYM预报产品不小于50 mm格点(填色),(c)CRA空间检验的SCMOC预报产品不小于50 mm格点(填色)
Fig. 1 Observed rainstorm area in Nenjiang Basin on 18 Jul 2021 (the red triangle denotes the location of Yong'an Reservoir and Xinfa Reservoir, the blue line denotes the secondorder and the thirdorder river, hereinafter) (a)rainstorm area of merged precipitation (the shaded), (b)CMA-TYM grid data of no less than 50 mm precipitation verified by CRA (the shaded), (c)SCMOC grid data of no less than 50 mm precipitation verified by CRA (the shaded)
图 3 2021年嫩江流域9个暴雨日最大降水量位置偏差和最小位移偏差(a)CMA-TYM预报最大降水量位置偏差,(b)SCMOC预报最大降水量位置偏差,(c)CMA-TYM预报最小位移偏差, (d)SCMOC预报最小位移偏差
Fig. 3 Position deviation of maximum precipitation and minimum displacement deviation of 9 rainstorm days in Nenjiang Basin in 2021 (a)position deviation of maximum precipitation predicted by CMA-TYM, (b)position deviation of maximum precipitation predicted by SCMOC, (c)minimum displacement deviation predicted by CMA-TYM, (d)minimum displacement deviation predicted by SCMOC
表 1 2021年嫩江流域暴雨日
Table 1 Rainstorm days in Nenjiang Basin in 2021
暴雨日 日期 实况暴雨落区 24 h最大降水量/mm 500 hPa影响系统 实况 CMA-TYM SCMOC 06-14 6月14日 内蒙古呼伦贝尔市、兴安盟,黑龙江齐齐哈尔市,吉林省白城市 128.2 59.9 43.5 槽 06-15 6月15日 内蒙古呼伦贝尔市,黑龙江大兴安岭地区 102.4 108.0 69.4 槽 07-01 7月1日 内蒙古呼伦贝尔市、兴安盟,吉林省白城市 146.0 138.8 62.8 低涡前部 07-14 7月14日 内蒙古呼伦贝尔市,黑龙江大兴安岭地区 105.6 94.7 86.6 槽前部 07-17 7月17日 内蒙古呼伦贝尔市、兴安盟,黑龙江齐齐哈尔市 119.5 38.8 12.8 槽前部 07-18 7月18日 内蒙古呼伦贝尔市,黑龙江齐齐哈尔市、黑河市 153.4 131.7 68.8 东北冷涡 07-19 7月19日 内蒙古呼伦贝尔市,黑龙江齐齐哈尔市、黑河市 140.6 113.1 77.6 东北冷涡 07-26 7月26日 内蒙古兴安盟,黑龙江齐齐哈尔市、大庆市、绥化市、黑河市、伊春市 93.2 127.3 76.2 东北冷涡 07-31 7月31日 内蒙古呼伦贝尔市 104.8 103.7 116.9 东北冷涡 -
[1] 李永生, 王莹.嫩江流域夏季降水气候特征及前兆信号分析.黑龙江气象, 2016, 33(1):13-17. doi: 10.3969/j.issn.1002-252X.2016.01.004Li Y S, Wang Y. Analysis on climate characteristics and precursor signal of summer precipitation in Nenjiang Basin. Heilongjiang Meteor, 2016, 33(1): 13-17. doi: 10.3969/j.issn.1002-252X.2016.01.004 [2] 李鸿雁, 杨巍, 李峰平. 嫩江流域降水特征时空分布分析. 西北大学学报(自然科学版), 2020, 50(3): 427-437. doi: 10.16152/j.cnki.xdxbzr.2020-03-013Li H Y, Yang W, Li F P. The spatiotemporal distribution of precipitation characteristics in Nenjiang River Basin. J Northwest University(Nat Sci Ed), 2020, 50(3): 427-437. doi: 10.16152/j.cnki.xdxbzr.2020-03-013 [3] 白人海, 孙永罡. 松花江嫩江流域洪涝发生与流域内降水的关系. 自然灾害学报, 2000, 9(2): 49-54. doi: 10.3969/j.issn.1004-4574.2000.02.008Bai R H, Sun Y G. The relation of flood and precipitation in Songhuajiang and Nenjiang valley. J Natural Disasters, 2000, 9(2): 49-54. doi: 10.3969/j.issn.1004-4574.2000.02.008 [4] 张书德, 刘哲, 蔺慧敏. '98嫩江流域齐齐哈尔市防洪的反思. 水利科技与经济, 2001, 7(2): 83. doi: 10.3969/j.issn.1006-7175.2001.02.022Zhang S D, Liu Z, Lin H M. Reflection on flood control of Qiqihar City in Nenjiang River Basin in 1998. Water Conservancy Sci and Technol and Economy, 2001, 7(2): 83. doi: 10.3969/j.issn.1006-7175.2001.02.022 [5] 颜旭光, 黄晓宇, 刘涛, 等. 2013年嫩江暴雨洪水及尼尔基水库防洪作用. 东北水利水电, 2015, 33(2): 59-60. doi: 10.3969/j.issn.1002-0624.2015.02.025Yan X G, Huang X Y, Liu T, et al. Rainstorm and flood of Nenjiang River in 2013 and flood control effect of Nierji Reservoir. Water Res & Hydropower of Northeast China, 2015, 33(2): 59-60. doi: 10.3969/j.issn.1002-0624.2015.02.025 [6] 陈丽娟, 张培群, 赵振国. 松嫩辽流域夏季面雨量预测因子探讨. 应用气象学报, 2005, 16(5): 663-669. doi: 10.3969/j.issn.1001-7313.2005.05.013Chen L J, Zhang P Q, Zhao Z G. An approach to a prognostic factor of basin rainfall in summer over the Songhuajiang Nenjiang Liaohe Valleys. J Appl Meteor Sci, 2005, 16(5): 663-669. doi: 10.3969/j.issn.1001-7313.2005.05.013 [7] 王新敏, 栗晗. 多数值模式对台风暴雨过程预报的空间检验评估. 气象, 2020, 46(6): 753-764. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006003.htmWang X M, Li H. Spatial verification evaluation of typhoon rainstorm by multiple numerical models. Meteor Mon, 2020, 46(6): 753-764. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006003.htm [8] 刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102 [9] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li J, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [10] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 [11] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS2.0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307 [12] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101 [13] 麻素红, 张进, 沈学顺, 等. 2016年GRAPES_TYM改进及对台风预报影响. 应用气象学报, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPES_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301 [14] 韦青, 代刊, 林建, 等. 2016-2018年全国智能网格降水及温度预报检验评估. 气象, 2020, 46(10): 1272-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202010002.htmWei Q, Dai K, Lin J, et al. Evaluation on the 2016-2018 fine gridded precipitation and temperature forecasting. Meteor Mon, 2020, 46(10): 1272-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202010002.htm [15] 贺雅楠, 高嵩, 薛峰, 等. 基于MICAPS4的智能网格预报平台设计与实现. 应用气象学报, 2018, 29(1): 13-24. doi: 10.11898/1001-7313.20180102He Y N, Gao S, Xue F, et al. Design and implementation of intelligent gride forecasting platform based on MICAPS4. J Appl Meteor Sci, 2018, 29(1): 13-24. doi: 10.11898/1001-7313.20180102 [16] 张玉涛, 佟华, 孙健. 一种偏差订正方法在平昌冬奥会气象预报的应用. 应用气象学报, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103 [17] 韦青, 李伟, 彭颂, 等. 国家级天气预报检验分析系统建设与应用. 应用气象学报, 2019, 30(2): 245-256. doi: 10.11898/1001-7313.20190211Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi: 10.11898/1001-7313.20190211 [18] Gilleland E, Ahijevych D A, Brown B G, et al. Verifying forecasts spatially. Bull Amer Meteor Soc, 2010, 91(10): 1365-1373. [19] 符娇兰, 宗志平, 代刊, 等. 一种定量降水预报误差检验技术及其应用. 气象, 2014, 40(7): 796-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201407003.htmFu J L, Zong Z P, Dai K, et al. Application of a verification method on bias analysis of quantitative precipitation forecasts. Meteor Mon, 2014, 40(7): 796-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201407003.htm [20] Ebert E E, McBride J L. Verification of precipitation in weather systems: Determination of systematic errors. J Hydrol, 2000, 239: 179-202. [21] Ebert E E, Gallus Jr W A. Toward better understanding of the contiguous rain area(CRA) method for spatial forecast verification. Wea Forecasting, 2009, 24(5): 1401-1415. [22] 符娇兰, 代刊. 基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析. 气象, 2016, 42(12): 1456-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612004.htmFu J L, Dai K. The ECMWF model precipitation systematic error in the east of southwest China based on the contiguous rain area method for spatial forecast verification. Meteor Mon, 2016, 42(12): 1456-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612004.htm [23] Sharma K, Ashrit R, Ebert E, et al. Assessment of Met Office Unified Model(UM) quantitative precipitation forecasts during the Indian summer monsoon: Contiguous rain area (CRA) approach. J Earth Syst Sci, 2019, 128: 4. [24] Sharma K, Ashrit R, Ebert E, et al. NGFS rainfall forecast verification over India using the contiguous rain area(CRA) method. Mausam: J the Meteor Department of India, 2015, 66(3): 415-422. [25] Dube A, Ashrit R, Ashish A, et al. Forecasting the heavy rainfall during Himalayan flooding-June 2013. Wea Climate Extremes, 2014, 4: 22-34. [26] Yu Z F, Chen Y J, Ebert B, et al. Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS-TC over China. Meteor Appl, 2019, 27(1): 1-18. [27] Chen Y J, Ebert E E, Davidson N E, et al. Application of contiguous rain area(CRA) methods to tropical cyclone rainfall forecast verification. Earth and Space Sci, 2018, 5: 736-752. [28] Ebert E, Kusselson S, Turk M. Validation of tropical rainfall potential(TRaP) forecasts for Australian tropical cyclones. Aust Met Mag, 2005, 54(2): 121-135. [29] Ebert E E, Kusselson S, Turk M, et al. Ensemble tropical rainfall potential(eTRaP) forecasts. Wea Forecasting, 2011, 26(2): 213-224. [30] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [31] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501 [32] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [33] 宝兴华, 夏茹娣, 罗亚丽, 等. "21·7"河南特大暴雨气象和水文雨量观测对比. 应用气象学报, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603