A Heavy Precipitation Process over the Tibetan Plateau Under the Joint Effects of a Tropical Cyclone and Vortex
-
摘要: 利用联合台风预警中心(Joint Typhoon Warning Center,JTWC)最佳路径资料、逐小时降水资料和ERA5再分析资料,研究2017年5月26—31日孟加拉湾风暴与高原低涡共同影响下青藏高原一次强降水过程,结果表明:风暴和南支槽共同作用下建立的孟加拉湾至青藏高原的水汽输送带为高原低涡-切变线区域的降水提供水汽。南支槽后冷气流在青藏高原南部陡坡下沉形成冷垫,孟加拉湾偏南暖湿气流首先沿冷垫向北抬升,爬上青藏高原后向北在高原切变线附近再次抬升,增加降水区地表至对流层高层大气中的可降水量。风暴偏南风暖湿气流与青藏高原北部干冷空气交汇产生锋生,大气湿斜压性显著增长,湿等熵线密集陡立导致垂直涡度剧烈发展,有利于高原低涡加强。风暴北上过程中其高层反气旋式出流加强青藏高原槽前西南风高空急流,辐散增强有利于低层切变线发展和高原低涡东移,产生大范围强降水。高原低涡切变线与风暴水汽输送的正反馈作用,为降水区提供持续视热源和视水汽汇,有利于青藏高原降水系统的维持和发展。Abstract: The plateau vortex and the tropical cyclone over the Bay of Bengal have common active periods but there are few studies on the influence of their interaction on the plateau precipitation. Therefore, a large scale heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone over the Bay of Bengal and plateau vortex is analyzed which occurs during 26-31 May 2017, based on the Joint Typhoon Warning Center (JTWC) best-track data, hourly precipitation observation data and combined with hybrid single-particle lagrangian integrated trajectory (HYSPLIT) model. The results show that, with the cooperation of tropical cyclone over the Bay of Bengal and the India-Burma though, the water vapor transport jet from the Bay of Bengal to the southeast of the Tibetan Plateau is established, providing water vapor for the low vortex and shear line of the plateau. The cold air behind the India-Burma though forms a cold cushion on the steep slope of the southern Tibetan Plateau, and the warm water vapor from the Bay of Bengal first rises northward along the cold cushion, then sinks after ascending to the plateau, and rises northward again near the low vortex and shear line of the plateau, which increases the precipitable water between the plateau surface and the upper troposphere atmosphere. Meanwhile, frontogenesis is generated by the confluence of tropical cyclone southerly warm water vapor with the cold and dry air in the northern part of the plateau. In the process of frontogenesis, the atmospheric wet baroclinicity increases significantly and the wet isentropic line rises sharply, which promotes the sharp development of vertical vorticity and the enhancement of plateau low vortex. During the northward movement, the anticyclonic outflow from the upper layer of the tropical cyclone strengthens the southwest jet in front of the upper trough of the Tibetan Plateau, and the enhancement of divergence favors the development of the plateau shear line and the eastward movement of the plateau low vortex, resulting in a large-scale heavy precipitation. On the other hand, the positive feedback of the water vapor transportation of the tropical cyclone over the Bay of Bengal and the shear line of the plateau vortex provides continuous apparent heat source and apparent moisture sink for the precipitation area, which is favorable for the maintenance and development of the precipitation system on the plateau.
-
图 1 2017年5月26日20:00—31日20:00高原低涡、未编号低涡间隔12 h和孟加拉湾风暴间隔6 h的移动路径及累积降水量分布(散点)
(橙色框表示高原降水关键区)
Fig. 1 Path of plateau vortex, unnumbered low vortex at 12 h intervals and tropical cyclone over the Bay of Bengal at 6 h intervals and distribution of accumulated precipitation from 2000 BT 26 May to 2000 BT 31 May in 2017 (the dot)
(the orange box denotes the main area of plateau precipitation)
图 6 沿95°~96°E平均经向剖面的相当位温(黑线,单位:K) 和垂直环流(矢量,由v与w×200倍合成)
(灰色阴影为地形, 五角星表示风暴所在纬度)
Fig. 6 Meridional sections of the equivalent potential temperature (the black line, unit:K) and vertical circulation averaged along 95°-96°E (the vector, derived from the combination of v and w×200)
(the gray shaded denotes topography,the pentacle denotes the latitude of tropical cyclone)
图 8 沿高原低涡中心(五角星) 的相对湿度(填色),相当位温(黑线,单位:K), MPV2 (红色虚线,单位:PVU,仅显示小于-0.2的值)(矢量由u与w×100合成) 经向剖面
Fig. 8 Meridional sections of relative humidity (the shaded), equivalent potential temperature (the black line, unit:K), MPV2 (the red dashed line, unit:PVU, only the values less than -0.2 are shown) along plateau vortex center (the pentacle)(the vector derived from the combination of u and w×100)
图 9 高原降水关键区区域平均的视热源Q1和视水汽汇Q2及其贡献项的垂直廓线
(绿线为Q1和Q2,红线为垂直输送项,黄线为平流项,蓝线为局地变化项)
Fig. 9 Vertical profiles of apparent heat source Q1 and apparent moist sink Q2 and their contribution terms in the main area of plateau precipitation
(the green line denotes Q1 and Q2, the red line denotes vertical movement term, the yellow line denotes advection term, the blue line denotes local term)
-
[1] 叶笃正.青藏高原气象学.北京:科学出版社, 1979.Ye D Z. Tibetan Plateau Meteorology. Beijing: Science Press, 1979. [2] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607 [3] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505 [4] 青藏高原气象科研拉萨会战组. 夏半年青藏高原500 hPa低涡切变线研究. 北京: 科学出版社, 1981.Lhasa Group for Tibetan Plateau Meteorology Research. Research of 500 hPa Shear Lines over the Tibetan Plateau in Summer. Beijing: Science Press, 1981. [5] 向朔育, 李跃清. 高原低涡研究和TRMM卫星资料应用的相关进展. 高原山地气象研究, 2011, 31(1): 74-78. doi: 10.3969/j.issn.1674-2184·2011.01.014Xiang S Y, Li Y Q. Progress in plateau low vortex and applications of TRMM satellite. Plateau Mountain Meteor Res, 2011, 31(1): 74-78. doi: 10.3969/j.issn.1674-2184·2011.01.014 [6] 任素玲, 方翔, 卢乃锰, 等. 基于气象卫星的青藏高原低涡识别. 应用气象学报, 2019, 30(3): 345-359. doi: 10.11898/1001-7313.20190308Ren S L, Fang X, Lu N M, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. doi: 10.11898/1001-7313.20190308 [7] Li L, Zhang R, Wen M. Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor Atmos Phys, 2014, 125(3/4): 135-144. [8] Li L, Zhang R, Wen M. Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008. Adv Atmos Sci, 2011, 28(4): 797-808. doi: 10.1007/s00376-010-0027-y [9] 赵平, 袁溢. 2014年7月14日高原低涡降水过程观测分析. 应用气象学报, 2017, 28(5): 532-543. doi: 10.11898/1001-7313.20170502Zhao P, Yuan Y. Characteristics of a plateau vortex precipitation event on 14 July 2014. J Appl Meteor Sci, 2017, 28(5): 532-543. doi: 10.11898/1001-7313.20170502 [10] 黄晓远, 李谢辉. 基于CMIP6的西南暴雨洪涝灾害风险未来预估. 应用气象学报, 2022, 33(2): 231-243. doi: 10.11898/1001-7313.20220209Huang X Y, Li X H. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. doi: 10.11898/1001-7313.20220209 [11] 王黉, 李英, 宋丽莉, 等. 川藏地区雷暴大风活动特征和环境因子对比. 应用气象学报, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406 [12] 李英, 郭荣芬, 索渺清, 等. 初夏孟加拉湾对流云团北上低纬高原的初步研究. 热带气象学报, 2003, 19(3): 277-284. doi: 10.3969/j.issn.1004-4965.2003.03.007Li Y, Guo R F, Suo M Q, et al. Elementary study on the northward movement of convective cloud cluster over the Bay of Bengal to the low latitude Plateau during early summer. J Trop Meteor, 2003, 19(3): 277-284. doi: 10.3969/j.issn.1004-4965.2003.03.007 [13] 李英, 张腾飞, 索渺清. 孟加拉湾云团影响下云南强降水分析. 气象科学, 2003, 23(2): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200302007.htmLi Y, Zhang T F, Suo M Q. Analysis on Yunnan severe precipitation aroused by convective cloud clusters over the Bay of Bengal during early summer. Scientia Meteor Sinica, 2003, 23(2): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200302007.htm [14] 许美玲, 张秀年, 杨素雨. 孟加拉湾风暴影响低纬高原的环流和云图特征分析. 热带气象学报, 2007, 23(4): 395-400. doi: 10.3969/j.issn.1004-4965.2007.04.011Xu M L, Zhang X N, Yang S Y. Ambient fields and satellite pictures characteristic analysis for storms over the Bay of Bengal affecting low-latitude Plateau. J Trop Meteor, 2007, 23(4): 395-400. doi: 10.3969/j.issn.1004-4965.2007.04.011 [15] 张腾飞, 段旭, 张杰. 初夏孟湾风暴造成云南连续性强降水的中尺度分析. 热带气象学报, 2006, 22(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200601009.htmZhang T F, Duan X, Zhang J. Mesoscale analysis of Yunnan successive heavy precipitation caused by storms over the Bay of Bengal in early summer. J Trop Meteor, 2006, 22(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200601009.htm [16] 陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210 [17] 王友恒, 王素贤. 孟加拉湾热带风暴的初步分析. 气象, 1988, 14(6): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198806004.htmWang Y H, Wang S X. A preliminary study of tropical cyclones over the Bay of Bengal. Meteor Mon, 1988, 14(6): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198806004.htm [18] 王友恒, 王素贤. 北印度洋热带风暴及其与西藏降水的关系. 气象, 1989, 15(11): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198911008.htmWang Y H, Wang S X. Tropical storms in the North Indian Ocean and the relationship with precipitation in Tibet. Meteor Mon, 1989, 15(11): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198911008.htm [19] 吕爱民. 孟加拉湾风暴活动对我国降水的影响. 北京: 中国气象科学研究院, 2013.Lü A M. Influence of Cyclonic Storm Activity in the Bay of Bengal on Precipitation in China. Beijing: Chinese Academy of Meteorological Sciences, 2013. [20] 杨祖芳, 李月安, 李伟华. 两个孟加拉湾风暴对我国降水不同影响的对比分析. 海洋预报, 2000, 17(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB200004006.htmYang Z F, Li Y A, Li W H. Contrastive analysis of different effects of two storms in the Bay of Bengal on precipitation in China. Marin Forec, 2000, 17(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB200004006.htm [21] 王子谦, 朱伟军, 段安民. 孟湾风暴影响高原暴雪的个例分析: 基于倾斜涡度发展的研究. 高原气象, 2010, 29(3): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201003020.htmWang Z Q, Zhu W J, Duan A M. A case study of snowstorm in Tibetan Plateau induced by Bay of Bengal storm: Based on the theory of slantwise vorticity development. Plateau Meteor, 2010, 29(3): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201003020.htm [22] 索渺清, 丁一汇. 南支槽与孟加拉湾风暴结合对一次高原暴雪过程的影响. 气象, 2014, 40(9): 1033-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409001.htmSuo M Q, Ding Y H. A case study on the effect of southern branch trough in the subtropical westerlies combined with the storm over the Bay of Bengal on plateau snowstorm. Meteor Mon, 2014, 40(9): 1033-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409001.htm [23] 段旭, 段玮. 孟加拉湾风暴对高原地区降水的影响. 高原气象, 2015, 34(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501001.htmDuan X, Duan W. Impact of Bay of Bengal storms on precipitation over plateau area. Plateau Meteor, 2015, 34(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501001.htm [24] Liu B, Li Y. Southwesterly water vapor transport induced by tropical cyclones over the Bay of Bengal during the South Asian Monsoon transition period. J Meteor Res Appl, 2022, 36(1): 140-153. [25] Draxler R P, Hess G D. An overview of the HYSPLIT-4 modeling system for trajectories, dispersion, and deposition. Aust Meteor Mag, 1998, 47: 295-308. [26] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展. 气象学报, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htmWu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm [27] 高松影, 赵婷婷, 宋丽丽, 等. 影响东北的两个罕见气旋发展机制对比. 应用气象学报, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504 [28] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302 [29] 李跃清, 郁淑华, 彭骏, 等, 青藏高原低涡切变线年鉴2017. 北京: 科学出版社, 2019.Li Y Q, Yu S H, Peng J, et al, Yearbook of Tibet Plateau Vortex and Shear Line in Qinghai-Xizang Plateau 2017. Beijing: Science Press, 2019. [30] Chen S H, Lin Y L. Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J Atmos Sci, 2005, 62: 331-350. [31] Smolarkiewicz P K, Rotunno R. Low Froude number flow past three-dimensional obstacles. Part Ⅰ: Baroclinically generated lee vortices. J Atmos Sci, 1989, 46: 1154-1164.