Comparison on the Circulation Background of Tropical Cyclone Affecting the South China Sea Based upon Different Reanalysis Datasets
-
摘要: 利用1981—2020年中国热带气旋最佳路径数据集、中国大气再分析资料(CMA-RA)、欧洲中期天气预报中心ERA5及美国NCEP/NCAR再分析资料(NCEP-Ⅰ),对比不同资料在表征影响南海热带气旋活动环流背景的能力,探讨CMA-RA的适用性。结果表明:不同资料基本刻画出与热带气旋活动密切相关的环流特征,包括南方涛动、菲律宾至南海低层纬向风、热带低层纬向风反向分布型、菲律宾至南海中东部低层涡度、热带西太平洋垂直风切变及南海至菲律宾以东海域中层湿度。它们对南方涛动、关键区纬向风和中层湿度的刻画较相似,CMA-RA和ERA5对南方涛动、低层纬向风及其与热带气旋关系的描述一致性高,较NCEP-Ⅰ密切,但低层经向风、关键物理量差异较大。对极端年环流具有相似的表现能力,但异常程度存在差异,海平面气压、低层纬向风高度一致,以CMA-RA与ERA5最接近;中层湿度CMA-RA与ERA5接近,较NCEP-Ⅰ偏小;关键物理量差异较大。CMA-RA对南海热带气旋环流的刻画具有与ERA5和NCEP-Ⅰ相当的性能,并与ERA5一致性较高,可为相关工作提供可替换的再分析资料集。Abstract: China Meteorological Administration launched China's Global atmospheric reanalysis program in November 2013, and the global atmospheric reanalysis product (CMA-RA) has been successfully developed. The performance of CMA-RA on describing the circulation background of tropical cyclone activity affecting the South China Sea is analyzed and compared with ERA5 and NCEP-Ⅰ, exploring the applicability of CMA-RA in tropical cyclone activity analysis, based on the tropical cyclone best track dataset compiled by Shanghai Typhoon Research Institute of China Meteorological Administration, CMA-RA, the fifth generation ECMWF atmospheric reanalysis dataset (ERA5) and the first generation atmospheric monthly reanalysis dataset of National Center for Environmental Prediction(NCEP) and National Center for Atmospheric Research(NCAR) from 1981 to 2020. The results are shown as follows. Three reanalysis datasets can basically depict the anomaly circulation characteristics of the key influence regions closely related to tropical cyclone activity affecting the South China Sea from July to October, including the Southern Oscillation, low-level zonal wind field in the Philippines to the eastern sea of the South China Sea, reverse distribution pattern of low-level zonal wind filed in the tropics, low-level vorticity from the Philippines to the central and eastern part of the South China Sea, environmental vertical wind shear in the tropical western Pacific, and mid-level humidity field from the South China Sea to the eastern sea of the Philippines. All datasets are highly similar in describing the Southern Oscillation, low-level zonal wind field and mid-level humidity field of key regions. CMA-RA and ERA5 have high agreement on the Southern Oscillation, low-level zonal wind characteristics and their relationship with tropical cyclone activity, which are closer than NCEP-Ⅰ. However, their characterization of low-level meridional wind field, relative vorticity and vertical wind shear are relatively different. Some circulations in the tropical Indian Ocean are relatively different with each other too. All datasets have similar ability to depict the key regions circulations in the extreme years of tropical cyclone activity, but they are different in area and intensity. They are highly consistent in the sea level pressure and low-level zonal wind characteristics, with CMA-RA and ERA5 being the most similar. The mid-level humidity of CMA-RA is consistent with ERA5, and they are both lower than NCEP-Ⅰ. But the characteristics of low-level relative vorticity and vertical wind shear are significantly different. CMA-RA has comparable performance with ERA5 and NCEP-Ⅰ in describing the circulation background of tropical cyclone activity affecting the South China Sea, and it's highly consistent with ERA5 on the whole. Therefore, it can provide an alternative atmospheric reanalysis dataset for the research of tropical cyclone activity in the South China Sea.
-
表 1 不同资料7—10月热带地区850 hPa纬向风距平场EOF前两个模态方差贡献率(单位:%)
Table 1 Comparison of different datasets in variance contributions of the first two EOF modes of 850 hPa zonal wind anomaly in tropical region from Jul to Oct (unit:%)
模态 CMA-RA ERA5 NCEP-Ⅰ EOF1 60.9 61.8 52.8 EOF2 10.2 10.3 13.3 -
[1] 赵天保, 符淙斌, 柯宗建, 等.全球大气再分析资料的研究现状与进展.地球科学进展, 2010, 25(3):242-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201003002.htmZhao T B, Fu C B, Ke Z J, et al. Global atmosphere reanalysis datasets: Current status and recent advances. Adv Earth Sci, 2010, 25(3): 242-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201003002.htm [2] 王金成, 陆慧娟, 韩威, 等. GRAPES全球三维变分同化业务系统性能. 应用气象学报, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3DVar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102 [3] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77(3): 437-471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [4] Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP/DOE AMIP-Ⅱ reanalysis(R-2). Bull Amer Meteor Soc, 2002, 83(1): 1631-1644. [5] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J Royal Meteor Soc, 2011, 137: 553-597. doi: 10.1002/qj.828 [6] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803 [7] Gelaro R, Mccarty W, Suárez M, et al. The modern-era retrospective analysis for research and applications, version 2(MERRA-2). J Climate, 2017, 30(14): 5419-5454. doi: 10.1175/JCLI-D-16-0758.1 [8] Kobayashi S, Ota Y, Harada Y, et al. The JRA-55 reanalysis: General specifications and basic characteristics. J Meteor Soc, 2015, 93(1): 5-48. doi: 10.2151/jmsj.2015-001 [9] 韦芬芬, 汤剑平, 王淑瑜. 中国区域夏季再分析资料高空变量可信度的检验. 地球物理学报, 2015, 58(2): 383-397. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502004.htmWei F F, Tang J P, Wang S Y. A reliability assessment of upper-level reanalysis datasets over China. Chinese J Geophys, 2015, 58(2): 383-397. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502004.htm [10] Brunke M A, Stegall S T, Zeng X B. A climatology of tropospheric humidity inversions in five reanalyzes. Atmos Res, 2015, 153: 165-187. doi: 10.1016/j.atmosres.2014.08.005 [11] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 [12] 郭艳君, 张思齐, 颜京辉, 等. 中国探空观测与多套再分析资料气温序列的对比研究. 气象学报, 2016, 74(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201602009.htmGuo Y J, Zhang S Q, Yan J H, et al. A comparison of atmosphere temperature over China between radiosonde observations and multiple reanalysis datasets. Acta Meteor Sinica, 2016, 74(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201602009.htm [13] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS2.0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307 [14] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [15] 朱智, 师春香, 张涛, 等. 多种再分析地表温度资料在中国区域的适用性分析. 冰川冻土, 2015, 37(3): 614-624. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503007.htmZhu Z, Shi C X, Zhang T, et al. Applicability analysis of various reanalyzed land surface temperature datasets in China. J Glaciol and Geocryology, 2015, 37(3): 614-624. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503007.htm [16] Zhu J, Hu A, Yan D Q, et al. Can reanalysis datasets describe the persistent temperature and precipitation extremes over China?. Theor Appl Climatol, 2017, 130(1/2): 655-671. [17] 丁莉, 李清泉, 刘芸芸. 热带大气ISO在几种再分析资料中的对比分析. 应用气象学报, 2013, 24(3): 314-322. http://qikan.camscma.cn/article/id/20130307Ding L, Li Q Q, Liu Y Y. The tropical atmospheric intra-seasonal oscillation with different reanalysis data. J Appl Meteor Sci, 2013, 24(3): 314-322. http://qikan.camscma.cn/article/id/20130307 [18] 黄燕玲, 陈海山, 蒋薇, 等. 东亚夏季风异常活动的多模态特征: 不同再分析资料的比较分析. 大气科学, 2015, 39(1): 145-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501012.htmHuang Y L, Chen H S, Jiang W, et al. Multi-spatial modes of East Asian summer monsoon activity: Comparative analysis of various reanalysis data. Chinese J Atmos Sci, 2015, 39(1): 145-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501012.htm [19] 刘刚, 徐士琦, 廉毅. 夏季亚洲阻塞高压识别及其对中国东北气候异常的可能影响: 不同再分析资料对比. 气象学报, 2019, 77(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902011.htmLiu G, Xu S Q, Lian Y. Recognition results of blocking high in Asia during summer and its possible impacts on climate anomalies in Northeast China: Comparison of various reanalysis data. Acta Meteor Sinica, 2019, 77(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902011.htm [20] 覃皓, 郑凤琴, 伍丽泉. 台风威马逊(1409)强度与降水变化的相互作用. 应用气象学报, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408 [21] 孔莉莎, 张秀芝. 西北太平洋历史台风风场重建模型参数试验. 应用气象学报, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105Kong L S, Zhang X Z. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105 [22] Murakami H. Tropical cyclones in reanalysis data sets. Geophys Res Lett, 2014, 41(6): 2133-2141. [23] 邓诗茹, 吴立广, 王瑞芳, 等. 多种再分析资料中热带气旋潜在生成指数分析. 气象科学, 2014, 34(3): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201403002.htmDeng S R, Wu L G, Wang R F, et al. Analysis of tropical cyclone genesis potential index with multiple reanalysis data. J Meteor Sci, 2014, 34(3): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201403002.htm [24] Malakar P, Kesarkar A P, Bhate J N, et al. Comparison of reanalysis datasets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci, 2020, 7(2): e2019EA000978. [25] 李艳, 金茹, 高翔. 不同再分析资料对热带气旋Roke(2011)外流-高空急流相互作用的对比. 大气科学学报, 2020, 43(3): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202003010.htmLi Y, Jin R, Gao X. Outflow-jet interaction analysis of tropical cyclone Roke(2011) within different atmospheric reanalysis datasets. Trans Atmos Sci, 2020, 43(3): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202003010.htm [26] Schenkel B A, Hart R E. An examination of tropical cyclone position, intensity and intensity life cycle within atmospheric reanalysis datasets. J Climate, 2012, 25(10): 3453-3475. [27] 严嘉明, 赵兵科, 张帅, 等. 边界层风廓线雷达对登陆台风观测适用性评估. 应用气象学报, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306 [28] Hodges K, Cobb A, Vidale P L. How well are tropical cyclones represented in reanalysis datasets. J Climate, 2017, 30(14): 5243-5264. [29] 吴慧, 邢彩盈, 吴胜安, 等. 夏季影响海南的热带气旋频数预测. 热带气象学报, 2016, 32(3): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201603009.htmWu H, Xing C Y, Wu S A, et al. Frequency prediction of tropical cyclones affecting Hainan in summer. J Trop Meteor, 2016, 32(3): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201603009.htm [30] 邢彩盈, 吴慧, 胡德强, 等. CFSv2模式产品在汛期海南热带气旋频数预测模型中的应用. 气象科学, 2017, 37(5): 666-672. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705011.htmXing C Y, Wu H, Hu D Q, et al. Application of CFSv2 products in tropical cyclone frequency prediction model in Hainan during flood season. J Meteor Sci, 2017, 37(5): 666-672. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705011.htm [31] 王旻燕, 姚爽, 姜立鹏, 等. 我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理. 气象科技进展, 2018, 8(1): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801038.htmWang M Y, Yao S, Jiang L P, et al. Collection and pre-processing of satellite remote-sensing data in CRA-40(CMA's Global Atmospheric ReAnalysis). Adv Meteor Sci Tech, 2018, 8(1): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801038.htm [32] Li C X, Zhao T B, Shi C X, et al. Assessment of precipitation from the CRA40 dataset and new generation reanalysis datasets in the global domain. Int J Climatol, 2021, 41(11): 5243-5263. [33] 周自江, 曹丽娟, 廖捷, 等. 水文气象信息概述: 观测、融合与再分析. 气象, 2022, 48(3): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202203002.htmZhou Z J, Cao L J, Liao J, et al. Overview of hydrometeorological information: Observation, data fusion and reanalysis. Meteor Mon, 2022, 48(3): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202203002.htm [34] Li C X, Zhao T B, Shi C X, et al. Evaluation of daily precipitation product in China from the CMA global atmospheric interim reanalysis. J Meteor Res, 2020, 34: 117-136. [35] Yang J X, Huang M T, Zhai P M. Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau. J Meteor Res, 2021, 35(4): 663-672. [36] 张德杰, 师春香, 张涛, 等. 多种资料的总云量产品在中国区域的对比分析. 高原气象, 2022, 41(3): 803-813. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203021.htmZhang D J, Shi C X, Zhang T, et al. Comparative analysis of the total cloud cover products of various data in China. Plateau Meteor, 2022, 41(3): 803-813. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202203021.htm [37] 刘梦杰, 张卫星, 张镇驿, 等. CRA-40在中国地区GNSS水汽反演中的适用性评估与分析. 南京信息工程大学学报(自然科学版), 2021, 13(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ202102003.htmLiu M J, Zhang W X, Zhang Z Y, et al. On the applicability of CRA40 in GNSS precipitable water vapor retrieval over China. Journal of Nanjing University of Information Science & Technology(Nat Sci Ed), 2021, 13(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ202102003.htm [38] Yu X J, Zhang L X, Zhou T J, et al. The Asian subtropical westerly jet stream in CRA-40, ERA5, and CFSR reanalysis data: Comparative assessment. J Meteor Res, 2021, 35(1): 46-63. [39] Lu X, Yu H, Ying M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv Atmos Sci, 2021, 38(4): 690-699. [40] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征. 应用气象学报, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306 [41] 郑倩, 高猛. 西北太平洋热带气旋生成客观预测模型. 应用气象学报, 2022, 33(5): 594-603. doi: 10.11898/1001-7313.20220507Zheng Q, Gao M. An objective prediction model for tropical cyclone genesis in the Northwest Pacific. J Appl Meteor Sci, 2022, 33(5): 594-603. doi: 10.11898/1001-7313.20220507 [42] 高拴柱, 张胜军, 吕心艳, 等. 南海台风生成前48 h环流特征及热力与动力条件. 应用气象学报, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in the South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302