Distribution Characteristics and Meteorological Prediction Model of Air Negative Oxygen Ions in Fujian
-
摘要: 负氧离子是评价空气新鲜和清洁程度的重要指标。利用2018—2021年福建省负氧离子观测站数据分析负氧离子浓度的时空变化特征,并采用多元线性回归方法、多元逻辑回归方法和LightGBM机器学习方法建立负氧离子浓度预测模型。结果表明:福建省负氧离子资源十分丰富,中海拔区(350~550 m)年平均负氧离子浓度最高,低海拔区次之,高海拔区最小。负氧离子浓度日变化特征呈一峰一谷型,04:00—06:00(北京时,下同)达到峰值,12:00—13:00达到谷值;中海拔区负氧离子浓度季节变化较大,季节平均浓度从大到小依次为春季、夏季、冬季、秋季,而高、低海拔区季节变化相对较小。福建省不同海拔地区负氧离子浓度与湿度、降水和能见度均呈显著正相关,负氧离子浓度与气温、风速和气压显著相关,但不同海拔地区的相关性有所不同。机器学习方法对不同海拔地区负氧离子浓度数值的拟合效果比多元线性回归方法有明显提升,对负氧离子浓度等级拟合的准确率比多元逻辑回归方法提高7%~12%,且在绝大部分等级上的准确率均高于多元逻辑回归方法。
-
关键词:
- 空气负氧离子;
- 气象因子;
- LightGBM机器学习;
- 时空变化特征;
- 预测模型
Abstract: The concentration of negative oxygen ions in air is an important index to evaluate the freshness and cleanliness of air. In recent years, it has become one hot topic concerned by governments and the public. From 2018 to 2021, Fujian has set up a number of observation stations for negative oxygen ions and meteorological factors over the entire province including seashore, mountain, humanities landscape areas, with good representativeness, reliability and continuity. Using the local observations, the spatial and temporal variations of negative oxygen ions concentration in Fujian is analyzed, and the negative oxygen ions concentration and grade prediction models are established based on multiple linear regression method and LightGBM machine learning method. The results show that, negative oxygen ions in Fujian is very rich and is very good for human health. The annual average concentration is between 708-8315 cm-3, which is highest in high altitude, next in low altitude, and the concentration in middle altitude is the smallest. Overall, the annual average concentration of negative oxygen ions of nearly 80% site is beyond the standard of fresh air defined by World Health Organization. The diurnal variation of the concentration of negative oxygen ions show the characteristics of a peak and a trough, with the peak value mainly occurring at 0400-0600 BT and the trough value at 1200-1300 BT. The seasonal variation of negative oxygen ions concentration is more complex. The seasonal variation in the middle altitude area is greater, the seasonal average concentration in descending order is spring, summer, winter and autumn, while the seasonal variation in the high and low altitude area is relatively small. The main meteorological factors affecting the concentration of negative oxygen ions are temperature, humidity, precipitation, wind speed, air pressure and visibility. The concentration of negative oxygen ions is significantly positively correlated with humidity, precipitation and visibility at different altitudes, while the concentration of negative oxygen ions is significantly correlated with air temperature, wind speed and air pressure, but the correlation is different at different altitudes. The comparisons indicate the effects of LightGBM machine learning model are better than those of the traditional multiple linear regression model at different altitudes. The overestimation of negative oxygen ions concentration prediction is significantly improved, and the prediction grade of negative oxygen ions concentration can be improved by up to 12%. The results of logistic regression show that the traditional logistic regression basically has no predictive ability for small samples, while the LightGBM method has good learning ability in the case of small samples or unbalanced samples. -
表 1 福建省19个站点年平均NOI浓度空间分布
Table 1 Spatial distribution of annual average NOI concentration at 19 stations in Fujian
序号 站点名称 年平均NOI浓度/cm-3 海拔高度/m 海拔分区 1 福州气象站 2342 112 低海拔区 2 平潭流水镇 830 153 3 厦门鼓浪屿 708 25 4 莆田湄洲岛 1929 50 5 诏安九候山 4720 70 6 诏安江滨公园 2731 18 7 泉州清源山 3814 447 中海拔区 8 德化石牛山 2028 510 9 安溪云中山 2336 356 10 永定土楼 1567 400 11 泰宁寨下大峡谷 3797 361 12 大田气象站 1861 390 13 武夷山国家公园 8315 377 14 福州鼓山风景区 722 794 高海拔区 15 福鼎太姥山 1743 550 16 屏南白水洋 1242 944 17 德化县城区 956 629 18 南靖土楼 2265 730 19 上杭古田会址 1877 734 表 2 福建省不同海拔地区NOI浓度与气象因子相关系数
Table 2 Correlation between NOI concentration and meteorological factors at different altitudes of Fujian
气象因子 低海拔区 中海拔区 高海拔区 相关系数 样本量 相关系数 样本量 相关系数 样本量 气温 0.058** 193960 -0.060** 156201 0.050** 143349 相对湿度 0.010** 193960 0.125** 156201 0.033** 143349 降水强度 0.060** 59050 0.087** 81373 0.066** 81702 风速 -0.059** 103195 0.016** 85841 -0.045** 86777 气压 -0.082** 57684 -0.008* 90644 0.053** 88809 小时能见度 -0.011 21683 0.036** 81821 0.052** 84014 分钟降水量 0.059** 58472 0.076** 81389 0.063** 81702 分钟能见度 -0.011 21683 0.023** 81849 0.052** 83998 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 表 3 不同海拔地区NOI与气象因子5折交叉验证结果及机器学习模型
Table 3 5-fold cross-validation and machine learning model between NOI and meteorological factors at different altitudes
分区 样本均方根误差E LightGBM机器学习模型 折数1 折数2 折数3 折数4 折数5 低海拔区 4552.63 4690.15 4514.25 4270.73 4574.10 气象因子平均得分从高到低排序:X2,X1,X5,X3
R2=0.165,R=0.407,E=4392中海拔区 5754.01 5740.78 5715.85 5660.76 5774.29 气象因子平均得分从高到低排序:X1,X5,X2,X4,X3
R2=0.207,R=0.455,E=5685高海拔区 1468.28 1450.09 1436.00 1402.35 1494.02 气象因子平均得分从高到低排序:X1,X5,X4,X2,X3
R2=0.193,R=0.439,E=1435表 4 不同海拔地区逻辑回归结果准确率统计
Table 4 Accuracy statistics of logistic regression results at different altitudes
分区 6个等级验证集准确率/% 总体准确率/% 1 2 3 4 5 6 低海拔区 38 47 66 0 0 0 63 中海拔区 49 49 0 0 0 0 49 高海拔区 71 53 36 0 0 0 50 表 5 不同海拔地区NOI等级与气象因子5折交叉验证结果
Table 5 5-fold cross validation between NOI grade and meteorological factors at different altitudes
分区 5折交叉验证结果准确率/% 气象因子平均得分从高到低排序 折数1 折数2 折数3 折数4 折数5 低海拔区 69.45 69.35 69.40 68.84 69.73 X5,X1,X2,X3 中海拔区 59.82 59.54 60.03 60.49 59.32 X5,X1,X2,X4,X3 高海拔区 56.93 58.24 58.38 57.94 58.81 X1,X5,X2,X4,X3 表 6 不同海拔地区NOI等级机器学习模型的准确率统计
Table 6 Accuracy statistics of NOI grade machine learning at different altitudes
分区 6个等级验证集准确率/% 总体准确率/% 1 2 3 4 5 6 低海拔区 55 57 75 0 28 0 70 中海拔区 56 67 67 38 28 0 61 高海拔区 61 60 56 28 19 0 59 -
[1] 张景昌.空气中负氧离子的形成及其浓度衰减的规律.纺织基础科学学报, 1994, 7(4):306-309. https://www.cnki.com.cn/Article/CJFDTOTAL-FGJK404.003.htmZhang J C. The form of air negation ion and its law of density decline. Journal of Textile Basic Sciences, 1994, 7(4): 306-309. https://www.cnki.com.cn/Article/CJFDTOTAL-FGJK404.003.htm [2] 夏廉博. 有益于人体健康的负离子. 大众医学, 1981(7): 36-37.Xia L B. The negative ions beneficial to human health. Popular Medicine, 1981(7): 36-37. [3] 刘国庭. 北戴河疗养环境对健康的影响. 中国疗养医学, 2004, 13(1): 7-10. doi: 10.3969/j.issn.1005-619X.2004.01.006Liu G T. The effects of Beidaihe convalescent environment on health. Chinese Journal of Convalescent Medicine, 2004, 13(1): 7-10. doi: 10.3969/j.issn.1005-619X.2004.01.006 [4] 王忠贵. 森林康养对人体健康促进作用浅析. 现代园艺, 2020(1): 106-108. doi: 10.3969/j.issn.1006-4958.2020.01.050Wang Z G. The brief analysis of promoting effect of forest health on human health. Xiandai Horticulture, 2020(1): 106-108. doi: 10.3969/j.issn.1006-4958.2020.01.050 [5] Hyun J, Lee S G, Hwang J. Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus. Journal of Aerosol Science, 2017, 107: 31-40. doi: 10.1016/j.jaerosci.2017.02.004 [6] Zhang C Y, Wu Z N, Li Z H, et al. Inhibition effect of negative air ions on adsorption between volatile organic compounds and environmental particulate matter. Langmuir, 2020, 36(18): 5078-5083. doi: 10.1021/acs.langmuir.0c00109 [7] Jiang S, Ma A, Ramachandran S. Negative air ions and their effects on human health and air quality improvement. Int J Mol Sci, 2018, 19: 2966. doi: 10.3390/ijms19102966 [8] Chu C H, Chen S R, Wu C H, et al. The effects of negative air ions on cognitive function: An event-related potential(ERP) study. Int J Biometeorol, 2019, 63(10): 1309-1317. doi: 10.1007/s00484-019-01745-7 [9] 曾曙才, 苏志尧, 陈北光. 我国森林空气负离子研究进展. 南京林业大学学报(自然科学版), 2006, 30(5): 107-111. doi: 10.3969/j.issn.1000-2006.2006.05.026Zeng S C, Su Z Y, Chen B G. The review on forest negative air ions in China. Journal of Nanjing Forestry University(Nat Sci Ed), 2006, 30(5): 107-111. doi: 10.3969/j.issn.1000-2006.2006.05.026 [10] 李琳, 杜倩, 刘铁男, 等. 空气负离子研究进展. 现代化农业, 2017(12): 30-31. doi: 10.3969/j.issn.1001-0254.2017.12.016Li L, Du Q, Liu T N, et al. The research progress of air negative ions. Modernizing Agriculture, 2017(12): 30-31. doi: 10.3969/j.issn.1001-0254.2017.12.016 [11] 彭巍, 李明文, 王慧, 等. 空气负离子国内外研究进展及其在森林康养方面的积极作用综述. 温带林业研究, 2020, 3(3): 11-14. doi: 10.3969/j.issn.2096-4900.2020.03.003Peng W, Li M W, Wang H, et al. A review of the research progress of negative air ion at home and abroad and its positive role in forest health. Journal of Temperate Forestry Research, 2020, 3(3): 11-14. doi: 10.3969/j.issn.2096-4900.2020.03.003 [12] 邵海荣, 贺庆棠, 阎海平, 等. 北京地区空气负离子浓度时空变化特征的研究. 北京林业大学学报, 2005, 27(3): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200503008.htmShao H R, He Q T, Yan H P, et al. The spatio-temporal changes of negative air ion concentrations in Beijing. Journal of Beijing Forestry University, 2005, 27(3): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200503008.htm [13] 刘和俊, 夏尚光, 丁增发, 等. 九华山风景区空气负离子水平分析与评价. 中国城市林业, 2012, 10(5): 14-17. doi: 10.3969/j.issn.1672-4925.2012.05.006Liu H J, Xia S G, Ding Z F, et al. The analysis and evaluation on aero-anion concentration in Jiuhua Mountain. Journal of Chinese Urban Forestry, 2012, 10(5): 14-17. doi: 10.3969/j.issn.1672-4925.2012.05.006 [14] 毛成忠, 于乃莲, 杜佳乐, 等. 典型城市区与森林区空气负氧离子特征比较分析. 气象科技, 2014, 42(6): 1083-1088. doi: 10.3969/j.issn.1671-6345.2014.06.023Mao C Z, Yu N L, Du J L, et al. The characteristic comparison of negative oxygen ion between typical urban and forest areas. Meteor Sci Technol, 2014, 42(6): 1083-1088. doi: 10.3969/j.issn.1671-6345.2014.06.023 [15] 廖荣俊, 颜晓捷, 江波, 等. 灵鹫山国家森林康养基地空气负氧离子浓度变化特征及其影响因素研究. 浙江林业科技, 2021, 41(5): 36-41. doi: 10.3969/j.issn.1001-3776.2021.05.006Liao R J, Yan X J, Jiang B, et al. The variation characteristics of negative air ions concentrations and influencing factors in Lingjiushan Mountain National Forest Health Base. Zhejiang For Sci Technol, 2021, 41(5): 36-41. doi: 10.3969/j.issn.1001-3776.2021.05.006 [16] 陈兵红, 应俊辉, 靳全锋, 等. 白云山国家森林公园空气负氧离子分布特征. 浙江农业科学, 2019, 60(2): 337-339. doi: 10.16178/j.issn.0528-9017.20190249Chen B H, Ying J H, Jin Q F, et al. The distribution characteristics of air negative oxygen ions in Baiyunshan National Forest Park. Journal of Zhejiang Agricultural Sciences, 2019, 60(2): 337-339. doi: 10.16178/j.issn.0528-9017.20190249 [17] 李巧云, 李高飞, 廖菊阳, 等. 湖南省森林植物园空气负氧离子浓度特征及影响要素研究. 湖南林业科技, 2019, 46(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKJ201901004.htmLi Q Y, Li G F, Liao J Y, et al. The study on the characteristics of negative air ion concentrations and its influential factors in Hunan Forest Botanical Garden. Hunan Forestry Science & Technology, 2019, 46(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKJ201901004.htm [18] 王玉龙. 太宽河自然保护区森林负氧离子浓度日变化规律研究. 山西林业科技, 2017, 46(4): 11-14. doi: 10.3969/j.issn.1007-726X.2017.04.004Wang Y L. The study on daily change rule of negative oxygen ion concentration in Taikuanhe Nature Reserve. Shanxi Forestry Science and Technology, 2017, 46(4): 11-14. doi: 10.3969/j.issn.1007-726X.2017.04.004 [19] 邵海荣, 贺庆棠. 森林与空气负离子. 世界林业研究, 2000, 13(5): 19-23. doi: 10.3969/j.issn.1001-4241.2000.05.004Shao H R, He Q T. The forest and air anion. World Forestry Research, 2000, 13(5): 19-23. doi: 10.3969/j.issn.1001-4241.2000.05.004 [20] 蒙晋佳, 张燕. 广西部分景点上空空气负离子浓度的分布规律. 环境科学研究, 2004, 17(3): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200403008.htmMeng J J, Zhang Y. The distribution of air anion concentration above ground at some scenic sites in Guangxi. Research of Environmental Sciences, 2004, 17(3): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200403008.htm [21] 季玉凯, 周永斌, 米淑红, 等. 棋盘山风景区空气负离子浓度的研究. 辽宁林业科技, 2007(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LNLK200703005.htmJi Y K, Zhou Y B, Mi S H, et al. The study on the concentration of negative ions in air of Qipanshan Scenic Area. Journal of Liaoning Forestry Science & Technology, 2007(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LNLK200703005.htm [22] 马晶昊, 董子舟, 杨云芸, 等. 长沙市负氧离子浓度变化特征与气象因子相关初探. 安徽农业科学, 2014, 42(28): 9872-9874. doi: 10.3969/j.issn.0517-6611.2014.28.084Ma J H, Dong Z Z, Yang Y Y, et al. The variation features of negative ion concentration and its correlation with meteorological factors in Changsha. Journal of Anhui Agri Sci, 2014, 42(28): 9872-9874. doi: 10.3969/j.issn.0517-6611.2014.28.084 [23] 何宁, 林明丽, 赵红云, 等. 湘潭负氧离子浓度变化与气象要素的相关分析. 贵州气象, 2016, 40(2): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GZQX201602012.htmHe N, Lin M L, Zhao H Y, et al. The fluctuation of negative oxygen ion concentration and its influence of meteorological elements in Xiangtan. Journal of Guizhou Meteorology, 2016, 40(2): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GZQX201602012.htm [24] 谭静, 陈正洪, 罗学荣, 等. 湖北省旅游景区大气负氧离子浓度分布特征以及气象条件的影响. 长江流域资源与环境, 2017, 26(2): 314-322. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201702018.htmTan J, Chen Z H, Luo X R, et al. The distribution characteristics of air negative oxygen ion concentration and the influence of meteorological conditions in tourist attractions in Hubei Province. Resources and Environment in the Yangtze Basin, 2017, 26(2): 314-322. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201702018.htm [25] 陈兵红, 应俊辉, 靳全锋. 丽水市空气负氧离子分布特征及影响因素. 浙江农业科学, 2018, 59(8): 1444-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201808036.htmChen B H, Ying J H, Jin Q F. The distribution characteristics and influencing factors of air negative oxygen ions in Lishui City. Journal of Zhejiang Agricultural Sciences, 2018, 59(8): 1444-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX201808036.htm [26] 金琪, 严婧, 杨志彪, 等. 湖北春季大气负氧离子浓度分布特征及与环境因子的关系. 气象科技, 2015, 43(4): 728-733. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201504029.htmJin Q, Yan J, Yang Z B, et al. The spatial-temporal characteristics of spring air negative oxygen ions and its relationship with environmental factors in Hubei. Meteor Sci Technol, 2015, 43(4): 728-733. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201504029.htm [27] 何张齐, 刘其闯, 林玲春, 等. 城区空气负氧离子日变化及其与环境、气象因子的相关性研究. 安徽农业科学, 2015, 43(28): 260-262. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201528095.htmHe Z Q, Liu Q C, Lin L C, et al. The research on the aero anion concentration's diurnal variation and its correlation with environmental factors and meteorological factors of urban areas. Journal of Anhui Agri Sci, 2015, 43(28): 260-262. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201528095.htm [28] 黄世成, 徐春阳, 周嘉陵, 等. 城市和森林空气负离子浓度与气象环境关系的通径分析. 气象, 2012, 38(11): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211013.htmHuang S C, Xu C Y, Zhou J L, et al. The path analysis on negative air ion concentration and the meteorological environment in urban and forest zone. Meteor Mon, 2012, 38(11): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211013.htm [29] 丛菁, 孙立娟. 大连市负氧离子浓度分布及预测模型的建立. 气象与环境学报, 2010, 26(4): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201004009.htmCong J, Sun L J. The distribution of negative oxygen ion concentration and the establishment of prediction model in Dalian City. Journal of Meteorology and Environment, 2010, 26(4): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201004009.htm [30] 顾小丽, 钱燕珍, 鲍岳建, 等. 宁波市负氧离子浓度分布与预测模型及其在旅游气象中的应用. 气象与环境学报, 2013, 29(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201306020.htmGu X L, Qian Y Z, Bao Y J, et al. The distribution of oxygen anion concentration and forecasting model in Ningbo and its application in tourism meteorology. Journal of Meteorology and Environment, 2013, 29(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201306020.htm [31] 王宝, 解福燕, 张自祥, 等. 玉溪空气负氧离子预测模型的建立. 高原气象, 2015, 34(1): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501026.htmWang B, Xie F Y, Zhang Z X, et al. The forecast model establishment of air negative oxygenion in Yuxi. Plateau Meteor, 2015, 34(1): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501026.htm [32] 张勇, 陈兰英, 刘婷, 等. 峨眉山景区负氧离子浓度变化特征及预测模型研究. 气象与环境学报, 2018, 34(2): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201802008.htmZhang Y, Chen L Y, Liu T, et al. The change characteristics and prediction model about concentration of anions in the Emei Mountain scenic spot. Journal of Meteorology and Environment, 2018, 34(2): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201802008.htm [33] 孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101 [34] 刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502 [35] 米前川, 高西宁, 李玥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109 [36] 尹晓燕, 胡志群, 郑佳锋, 等. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506 [37] 韩念霏, 杨璐, 陈明轩, 等. 京津冀站点风温湿要素的机器学习订正方法. 应用气象学报, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409 [38] 蒙丽娜, 孙迎雪, 李科, 等. 北京香山空气负氧离子垂直变化测量研究. 城市环境与城市生态, 2014, 27(1): 12-15.Meng L N, Sun Y X, Li K, et al. The measurement of vertical variation of air negative oxygen ions in Beijing Xiangshan. Urban Environment & Urban Ecology, 2014, 27(1): 12-15. [39] 谢祖欣. 区域输送对福建省重点城市环境空气质量的影响研究. 福州: 福建省科学技术厅, 2019.Xie Z X. Influence of Regional Transport on Ambient Air Quality in Key Cities of Fujian Province. Fuzhou: Fujian Provincial Department of Science and Technology, 2019. [40] 林新彬, 刘爱鸣, 林毅, 等. 福建省天气预报技术手册. 北京: 气象出版, 2013.Lin X B, Liu A M, Lin Y, et al. Weather Forecast Technical Manual of Fujian Province. Beijing: China Meteorological Press, 2013. [41] 鹿世瑾, 王岩. 福建气候. 北京: 气象出版社, 2012.Lu S J, Wang Y. Climate of Fujian. Beijing: China Meteorological Press, 2012. [42] 徐敬, 丁国安, 颜鹏, 等. 北京地区PM2.5的成分特征及来源分析. 应用气象学报, 2007, 18(5): 645-654. http://qikan.camscma.cn/article/id/20070599Xu J, Ding G A, Yan P, et al. Componential characteristics and sources identification of PM2.5 in Beijing. J Appl Meteor Sci, 2007, 18(5): 645-654. http://qikan.camscma.cn/article/id/20070599 [43] 蒲维维, 赵秀娟, 张小玲. 北京地区夏末秋初气象要素对PM2.5污染的影响. 应用气象学报, 2011, 22(6): 716-723. http://qikan.camscma.cn/article/id/20110609Pu W W, Zhao X J, Zhang X L. Effect of meteorological factors on PM2.5 in late summer and early autumn of Beijing. J Appl Meteor Sci, 2011, 22(6): 716-723. http://qikan.camscma.cn/article/id/20110609 [44] 栾天, 郭学良, 张天航, 等. 不同降水强度对PM2.5的清除作用及影响因素. 应用气象学报, 2019, 30(3): 279-291. doi: 10.11898/1001-7313.20190303Luan T, Guo X L, Zhang T H, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities. J Appl Meteor Sci, 2019, 30(3): 279-291. doi: 10.11898/1001-7313.20190303 [45] 国家林业局. 空气负氧离子浓度观测技术规范(LY/T2586—2016). 北京: 中国标准出版社, 2016.National Forestry Administration. Technical Specification for Observation of Air Negative Oxygen on Concentration. Beijing: Standards Press of China, 2016. [46] 刘海知, 徐辉, 包红军, 等. 机器学习分类算法在降雨型滑坡预报中的应用. 应用气象学报, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303