留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FY-4A/AGRI海表温度产品和质量检验

崔鹏 王素娟 陆风 肖萌

崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301..
引用本文: 崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301.
Cui Peng, Wang Sujuan, Lu Feng, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301.
Citation: Cui Peng, Wang Sujuan, Lu Feng, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301.

FY-4A/AGRI海表温度产品和质量检验

DOI: 10.11898/1001-7313.20230301
资助项目: 

国家重点研究发展计划 2018YFC1506601

详细信息
    通信作者:

    王素娟, 邮箱: wangsj@cma.gov.cn

FY-4A/AGRI Sea Surface Temperature Product and Quality Validation

  • 摘要: 风云四号气象卫星A星(FY-4A)是我国第2代静止气象卫星首发星,搭载的先进静止轨道辐射成像仪AGRI是迄今为止我国静止轨道最先进的辐射成像仪。海表温度产品是FY-4A/AGRI基础定量产品之一,采用非线性海表温度算法在业务系统实时反演得到。以现场实测海表温度数据为参考,选择观测时间为30 min、观测空间距离为4 km的时空匹配窗口,对FY-4A/AGRI海表温度产品进行质量检验,评估结果表明:质量为优的像元平均偏差为-0.45~-0.42℃,标准差为0.81~0.88℃,相关系数在0.985以上。以Himawari-8/AHI海表温度数据为参考,按观测时间为1 h、空间距离为4 km的时空匹配窗口,对FY-4A/AGRI海表温度进行质量检验,质量为优的像元平均偏差为-0.26~-0.07℃,标准差为0.68~0.82℃,两者相关系数在0.985以上,达到0.001显著性水平。
  • 图  1  2021年7月—2022年6月FY-4A/AGRI海表温度和浮标海表温度偏差直方图

    Fig. 1  Histogram of difference between FY-4A/AGRI SST and buoy SST from Jul 2021 to Jun 2022

    图  2  2021年7月—2022年6月FY-4A/AGRI海表温度和浮标海表温度散点密度图

    Fig. 2  Scatter density map of FY-4A/AGRI SST and buoy SST from Jul 2021 to Jun 2022

    图  3  2021年7月—2022年6月5°×5°经纬度方块内FY-4A/AGRI海表温度和浮标海表温度偏差空间分布

    Fig. 3  Biases in 5°×5° square of FY-4A/AGRI SST against buoy SST from Jul 2021 to Jun 2022

    图  4  2021年7月—2022年6月以浮标海表温度为参考的FY-4A/AGRI海表温度误差时间序列

    Fig. 4  Time series of bias and standard deviation of FY-4A/AGRI SST relative to buoy SST from Jul 2021 to Jun 2022

    图  5  2021年7月—2022年6月以Himawari-8/AHI海表温度为参考的质量等级为优的FY-4A/AGRI海表温度误差时间序列

    Fig. 5  Time series of bias and standard deviation of excellent quality FY-4A/AGRI SST relative to Himawari-8/AHI SST from Jul 2021 to Jun 2022

    图  6  FY-4A/AGRI海表温度和Himawari-8/AHI海表温度散点图

    (a)2021年7月1日、8月1日和9月1日,(b)2021年10月1日、11月1日和12月1日,(c)2022年1月1日、2月1日和3月1日,(d)2022年4月1日、5月1日和6月1日

    Fig. 6  Scatter density map of FY-4A/AGRI SST and Himawari-8/AHI SST

    (a)1 Jul, 1 Aug and 1 Sep in 2021, (b)1 Oct, 1 Nov and 1 Dec in 2021, (c)1 Jan, 1 Feb and 1 Mar in 2022, (d)1 Apr, 1 May and 1 Jun in 2022

    表  1  FY-4A/AGRI NLSST算法误差信息

    Table  1  SST deviation of FY-4A/AGRI NLSST algorithm

    统计量 白天 夜间
    偏差/℃ 0.01 0.05
    绝对偏差/℃ 0.5 0.53
    标准差/℃ 0.61 0.66
    样本量 7381 7803
    下载: 导出CSV

    表  2  以浮标海表温度为参考的FY-4A/AGRI海表温度误差统计

    Table  2  Error information of FY-4A/AGRI SST relative to buoy SST

    时段 统计量
    白天 平均偏差/℃ -0.45 -1.00 -2.25
    标准差/℃ 0.81 0.94 1.94
    样本量 171473 81570 35607
    夜间 平均偏差/℃ -0.42 -0.99 -2.94
    标准差/℃ 0.88 1.03 1.99
    样本量 199364 92084 76844
    晨昏 平均偏差/℃ -0.42 -1.02 -2.80
    标准差/℃ 0.85 0.99 1.97
    样本量 28501 12386 8598
    下载: 导出CSV
  • [1] Ignatov A.GOES-R Advanced Baseline Imager(ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature.[2022-11-29].https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_SST-v2.0_Aug2010.pdf.
    [2] Donlon C, Martin M, Stark J, et al. The operational sea surface temperature and sea ice analysis(OSTIA) system. Remote Sens Environ, 2012, 116: 140-158. doi:  10.1016/j.rse.2010.10.017
    [3] 柯宗建, 华丽娟, 钟霖浩, 等. 海温异常对东亚夏季风强度先兆信号的影响. 应用气象学报, 2015, 26(5): 536-544. doi:  10.11898/1001-7313.20150503

    Ke Z J, Hua L J, Zhong L H, et al. The influence of sea surface temperature anomaly on the East Asian summer monsoon strength and its precursor. J Appl Meteor Sci, 2015, 26(5): 536-544. doi:  10.11898/1001-7313.20150503
    [4] Brasnett B. The impact of satellite retrievals in a global sea-surface-temperature analysis. Quart J Roy Meteor Soc, 2008, 134(636): 1745-1760. doi:  10.1002/qj.319
    [5] 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验. 应用气象学报, 2020, 31(6): 729-739. doi:  10.11898/1001-7313.20200608

    Wang S J, Cui P, Zhang P, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. doi:  10.11898/1001-7313.20200608
    [6] Cayula J F P, May D A, McKenzie B D, et al. VⅡRS-derived SST at the naval oceanographic office: From evaluation to operation. Proc SPIE. 2013, 8724: 87240S. doi:  10.1117/12.2017965
    [7] Brasnett B, Colan D S. Assimilating retrievals of sea surface temperature from VⅡRS and AMSR2. J Atmos Ocean Technol, 2016, 33(2): 361-375. doi:  10.1175/JTECH-D-15-0093.1
    [8] Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis. Bull Amer Meteor Soc, 2017, 98(5): 1015-1026. doi:  10.1175/BAMS-D-15-00002.1
    [9] Le Borgne P, Legendre G, Marsouin A. Operational SST Retrieval from MSG/SEVIRI Data. The 2006 EUMETSAT Meteorological Satellite Conference, 2006.
    [10] Schmit T J, Gunshor M M, Menzel W P, et al. Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull Amer Meteor Soc, 2005, 86(8): 1079-1096. doi:  10.1175/BAMS-86-8-1079
    [11] Anding D, Kauth R. Estimation of sea surface temperature from space. Remote Sens Environ, 1970, 1(4): 217-220. doi:  10.1016/S0034-4257(70)80002-5
    [12] Prabhakara C, Dalu G, Kunde V G. Estimation of sea surface temperature from remote sensing in the 11- to 13-μm window region. J Geophys Res, 1974, 79(33): 5039-5044. doi:  10.1029/JC079i033p05039
    [13] OSISAF. Geostationary Sea Surface Temperature Product User Manual. EUMETSAT, Berlin, 2011.
    [14] Kilpatrick K A, Podestá G P, Evans R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res, 2001, 106(C5): 9179-9197. doi:  10.1029/1999JC000065
    [15] Casey K S, Brandon T B, Cornillon P, et al. The Past, Present, and Future of the AVHRR Pathfinder SST Program. Springer Netherlands, 2010: 273-287.
    [16] Petrenko B, Ignatov A, Kihai Y, et al. Clear-sky mask for the advanced clear-sky processor for oceans. J Atmos Ocean Technol, 2010, 27(10): 1609-1623. doi:  10.1175/2010JTECHA1413.1
    [17] Saha K, Ignatov A, Liang X M, et al. Selecting a first-guess SST as input to ACSPO. Proc SPIE, 2012, 8372: 83720L. doi:  10.1117/12.918093
    [18] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [19] 任素玲, 牛宁, 覃丹宇, 等. 2021年2月北美极端低温暴雪的卫星遥感监测. 应用气象学报, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605

    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [20] 张志清, 陆风, 方翔, 等. FY-4卫星应用和发展. 上海航天, 2017, 34(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704002.htm

    Zhang Z Q, Lu F, Fang X, et al. Application and development of FY-4 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704002.htm
    [21] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658. doi:  10.1175/BAMS-D-16-0065.1
    [22] 陆风, 张晓虎, 陈博洋, 等. 风云四号气象卫星成像特性及其应用前景. 海洋气象学报, 2017, 37(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702001.htm

    Lu F, Zhang X H, Chen B Y, et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects. J Mar Meteor, 2017, 37(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702001.htm
    [23] Wang X, Min M, Wang F. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans Geosci Remote Sens, 2019, 57(11): 8827-8839. doi:  10.1109/TGRS.2019.2923247
    [24] Xu F, Ignatov A. In situ SST quality monitor(iQuam). J Atmos Ocean Technol, 2014, 31(1): 164-180. doi:  10.1175/JTECH-D-13-00121.1
    [25] Kurihara Y, Murakami H, Kachi M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys Res Lett, 2016, 43(3): 1234-1240. doi:  10.1002/2015GL067159
    [26] Kramar M, Ignatov A, Petrenko B, et al. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. Proc SPIE, 2016, 9827: 98270L.
    [27] McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res Oceans, 1985, 90(6): 11587-11601.
    [28] Walton C C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J Appl Meteorol, 1988, 27(2): 115-124. doi:  10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
    [29] 王素娟, 崔鹏, 张鹏, 等. FY-3B/VIRR海表温度算法改进及精度评估. 应用气象学报, 2014, 25(6): 701-710. http://qikan.camscma.cn/article/id/20140606

    Wang S J, Cui P, Zhang P, et al. The improvement of FY-3B/VIRR SST algorithm and its accuracy. J Appl Meteor Sci, 2014, 25(6): 701-710. http://qikan.camscma.cn/article/id/20140606
    [30] 魏彩英, 张晓虎, 赵现纲, 等. 区域扫描模式下风云二号气象卫星姿态求解方法. 应用气象学报, 2014, 25(5): 592-599. http://qikan.camscma.cn/article/id/20140508

    Wei C Y, Zhang X H, Zhao X G, et al. FY-2 meteorological satellite attitude solving method under area scan mode. J Appl Meteor Sci, 2014, 25(5): 592-599. http://qikan.camscma.cn/article/id/20140508
    [31] 王素娟, 郭强, 许健民. FY-4气象卫星定位用导航星选取方法. 应用气象学报, 2010, 21(2): 149-156. http://qikan.camscma.cn/article/id/20100203

    Wang S J, Guo Q, Xu J M. Guide star sub catalog method for FY-4 meteorological satellite. J Appl Meteor Sci, 2010, 21(2): 149-156. http://qikan.camscma.cn/article/id/20100203
    [32] 陆风, 许健民, 张其松. 风云二号气象卫星姿态和沿步进方向失配角参数对图像影响的模拟研究. 应用气象学报, 2001, 12(4): 393-399. http://qikan.camscma.cn/article/id/20010454

    Lu F, Xu J M, Zhang Q S. Impact study of attitude and pitch misalignment parameters on FY-2 image navigation with simulation method. J Appl Meteor Sci, 2001, 12(4): 393-399. http://qikan.camscma.cn/article/id/20010454
    [33] 谷松岩, 邱红, 范天锡. FY-2A与GMS-5红外通道遥感数据的辐射定标. 应用气象学报, 2001, 12(1): 79-84. http://qikan.camscma.cn/article/id/20010109

    Gu S Y, Qiu H, Fan T X. Inter-calibration between FY-2A IR channel and GMS-5 IRA channel. J Appl Meteor Sci, 2001, 12(1): 79-84. http://qikan.camscma.cn/article/id/20010109
    [34] 杨忠东, 刘健. 气象卫星可见光红外光学成像仪发展沿革. 应用气象学报, 2016, 27(5): 592-603. doi:  10.11898/1001-7313.20160508

    Yang Z D, Liu J. A review of visible infrared imaging radiometer on meteorological satellite. J Appl Meteor Sci, 2016, 27(5): 592-603. doi:  10.11898/1001-7313.20160508
    [35] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [36] 刘健, 崔鹏, 肖萌. FY-2G卫星冬夏云量产品偏差分析. 应用气象学报, 2017, 28(2): 177-188. doi:  10.11898/1001-7313.20170205

    Liu J, Cui P, Xiao M. The bias analysis of FY-2G cloud fraction in summer and winter. J Appl Meteor Sci, 2017, 28(2): 177-188. doi:  10.11898/1001-7313.20170205
  • 加载中
图(6) / 表(2)
计量
  • 摘要浏览量:  642
  • HTML全文浏览量:  146
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-03-13
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回